• Title/Summary/Keyword: Sliding Friction

Search Result 834, Processing Time 0.024 seconds

An Experimental Study on the Effect of Wear Particles on the Sliding Behavior of Silver-Coated Bearing Steels (은 박막이 코팅된 베어링강의 마찰거동에 미치는 마모입자의 영향에 대한 실험적 고찰)

  • 양승호;공호성;윤의성;김대은
    • Tribology and Lubricants
    • /
    • v.17 no.3
    • /
    • pp.221-227
    • /
    • 2001
  • The effect of silver particles on the sliding behavior of bearing steels was studied experimentally by using a ball-on-disk tribometer. Tests were performed in ambient air, dry air and vacuum. Disks of AISI 52100 were silver-coated by a thermal evaporation method, and the effects of silver particle transfer on friction were analyzed. In order to understand further the mechanism of silver particle transfer and its effect on friction and wear, pre-compressed silver particles were artificially introduced into the friction interface and the results were compared to those of silver-coated specimens. Results showed that the introduced silver particles produced transfer layers and resulted in low friction. It also showed that this low friction is closely related to the characteristic behavior of transfer layers. Shakedown occurred at the friction interface affected the friction and wear.

A Study on Friction and Wear Behavior of Carbon Fiber Reinforced Polyetheretherketone (탄소 섬유 보강 폴리에테르에테르케톤의 마찰 및 마모 거동에 관한 연구)

  • Ryoo, Sung-Kuk;Kim, Kyung-Woong
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.772-779
    • /
    • 2000
  • The friction and wear behavior of short carbon fiber reinforced polyetheretherketone was studied experimentally under dry sliding conditions against SCM440(AISI 4140) disks with a different surface roughness and hardness at the low sliding speeds and the high pressures on a pin-on-disk apparatus. Under the low disk surface roughness value the earsplitting noise and stick-slip were occurred. The increased adhesion friction and wear factor with stick-slip made the friction and wear behavior worse. Under the high disk surface hardness the break and falling-off of carbon fibers were accelerated. The carbon fibers fallen off from the matrix were ground into powder between two wear surfaces and this phenomenon caused a abrasive friction and wear factor to increase. So the friction and wear behavior became worse. With the transfer film made of wear particles formed on a disk, the carbon powder film formed on a pin lowered a friction coefficient.

  • PDF

A study on the frictional characteristics of wet-clutch friction materials in accordance with compositions (습식클러치용 마찰재의 조성별 마찰특성에 관한 연구)

  • 강전익;한홍구;권오관
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.56-65
    • /
    • 1990
  • Wet-friction materials have been widely used for clutches and brakes of automotives over past several decades. In order to enhance its performance, its friction behaviour should be fully understood. It is, however, still not at hand and therefore an attempt was made to have some more understanding of friction behaviour of wet-friction materials. Measurements of coefficient of friction were made with the variation of lubricants, lub. temperature, sliding velocity, and contact pressure. In addition, the effects of both the viscosity of lubricants and the porosity of materials on the coefficient of friction were also investigated. It can be concluded that the coefficient of friction is decreased as the concentrations of the resin and inorganic fillers are increased, and it tends to decrease with the increase in the lubricant temperature and sliding velocity.

  • PDF

An Experimental Study on the Effect of Wear Particles on the Sliding Behavior of Silver-Coated Bearing Steels (은 박막이 코팅된 베어링강의 마찰거동에 미치는 마모입자의 영향에 대한 실험적 고찰)

  • 양승호;공호성;윤의성;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.59-66
    • /
    • 2000
  • An experimental study on the effect of silver particles on the sliding behavior of bearing steels was performed by using a ball-on-disk tribometer. Tests were carried out in ambient air, dry and vacuum. Disks of AISI 52100 were silver-coaled by a thermal evaporation method, and the effects of silver particle transfer on friction were firstly analyzed. In order to understand further the mechanism of silver particles transfer and its effect on friction and wear, pre-compressed silver particles were artificially introduced into the friction interface and the results were compared to those of silver-coated specimens. Results showed that the introduced silver particles produced transfer layers and resulted in low friction. It also showed that this low friction is closely related to the characteristic behavior of transfer layers. Shakedown and rachetting occurred at the friction interface and affected the friction and wear.

  • PDF

Turbulent Drag Reduction Using the Sliding-Belt Device (미끄러지는 벨트 장치를 이용한 난류 항력 감소)

  • Choi, Byunggui;Choi, Haecheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1481-1489
    • /
    • 1999
  • The sliding-belt concept introduced by Bechert et al. (AIAA J., Vol. 34, pp. 1072~1074) is numerically applied to a turbulent boundary layer flow for the skin-friction reduction. The sliding belt is moved by the shear force exerted on the exposed surface of the belt without other dynamic energy input. The boundary condition at the sliding belt is developed from the force balance. Direct numerical simulations are performed for a few cases of belt configuration. In the ideal case where the mechanical losses associated with the belt can be ignored, the belt velocity increases until the integration of the shear stress over the belt surface becomes zero, resulting in zero skin friction on the belt. From practical consideration of losses occurred In the belt device, a few different belt velocities are given to the sliding belt. It is found that the amount of drag reduction is proportional to the belt velocity.

Friction and Wear Characteristics of Silica/Epoxy Composites for various Particle Size (입자지름의 변화에 따른 실리카 복합재료의 마찰 및 마모 특성)

  • Koh, Sung-Wi;Kim, Hyung-Jin;Kim, Kae-Dong;Kim, Chang-Soo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.141-144
    • /
    • 2006
  • In this study, the friction and wear characteristics of pure epoxy and silica-filled epoxy resin composites with average silica particle diameter of $6-33{\mu}m$ were investigated at ambient temperature by pin-on-disc friction test. The cumulative wear volume, friction coefficient and wear rate of these materials against SiC abrasive paper were determined experimentally. The cumulative wear volume tended to increase nonlinearly with increase of sliding distance and depended on diameter of the silica particle for all these composites. The sliding wear tests of the materials demonstrated that the friction coefficient and the wear rate of silica filled epoxy composites were lower than those of the pure epoxy. silica filled epoxy.

  • PDF

COMPARISON OF THE FRICTIONAL RESISTANCE BETWEEN ORTHODONTIC BRACKET & ARCHWIRE (교정용 BRACKET과 ARCHWIRE 사이의 마찰저항에 대한 비교연구)

  • Sung, Hyun Mee;Park, Young Chel
    • The korean journal of orthodontics
    • /
    • v.21 no.3
    • /
    • pp.543-560
    • /
    • 1991
  • Practitioners are aware of the presence of friction between bracket system and archwire during sliding movement of teeth. Clinically a mesiodistally applied force must exceed the frictional force to produce a tooth movement. The objective of this study were to determine, on a dry condition, changes in magnitude of friction with respect to load, 3rd order inclination (Torque), archwire materials and ligature type. Three wire alloys (Stainless Steel, TMA, NiTi) in two wire sizes (.016, .016x, .022 inch) were examined respect to two bracket system (Straight, Standard), and two ligature type (Metal, Plastic ligature) at three levels of load (100g, 150g, 200g). The results were as follows; 1. Frictional resistance was found to increase with increasing load for S.S., TMA, NiTi. 2. The straight bracket system was exhibited more frictional force than standard bracket system for .016x, .022 S.S. tightly ligated metal ligature. But, torque difference did not increase friction for loose metal ligature & plastic ligature. 3. Regardless of the ligature type, torque and load, stainless steel wire sliding against stainless steel exhibited the lowest friction, and TMA sliding against stainless steel exhibited the highest friction. 4. The loose stainless steel ligature generated lower frictional resistance than plastic ligature in all experimental groups. 5. The following factors affected friction in decreasing order; wire material ligature type, and load.

  • PDF

A Study of Sliding Friction and Wear Properties for Bronze added $Cu_2S$ as Solid Lubricants (고체윤활제 $Cu_2S$첨가 소결청동의 미끄럼 마찰마모특성 연구)

  • Lee, Han-Young;Ikenaga, Akira
    • Tribology and Lubricants
    • /
    • v.23 no.2
    • /
    • pp.66-72
    • /
    • 2007
  • [ $MoS_2$ ], is a well-known metal sulfide applied as solid lubricants and an additive to prolong the life of sintered bearings under severe conditions. However, the high price of $MoS_2$ limited its wide application. This study is aimed to investigate the possibility far application to solid lubricants for $Cu_2S$ as a substitute of $MoS_2$. Bronzes added $Cu_2S$ and $MoS_2$, are produced by powder metallurgy in this study, and then evaluated their friction and wear properties., as well as sintered bronze. The sliding wear test using pin-on-disc type machine, was conducted at several sliding speeds for three type test pieces sintered bronzes added $Cu_2S$ and $MoS_2$, and sintered bronze without lubricants. Addition of $Cu_2S$ to bronze leads to relatively good friction properties, although it is not so good as addition of $MoS_2$. However, the wear properies of sintered bronze added $Cu_2S$ are better than that of sintered bronze added $MoS_2$.

Analysis of Friction Signals Based on Sliding Tests with Finger for Tactile Sensibility (촉감 감성 해석을 위한 미끄럼 마찰 시험과 신호 분석)

  • Park, JinHwak;Park, SeMin;Sesaldo, May Grace;Lee, YoungZe
    • Tribology and Lubricants
    • /
    • v.29 no.3
    • /
    • pp.167-170
    • /
    • 2013
  • The friction behavior of human skin is determined by the complex interplay of the material and surface properties of the skin, as well as the contacting material, and strongly depends on the contact parameters (e.g., pressure and sliding velocity) and the presence of substances such as water, sweat, or skin surface lipids at the interface. Including a study on the effect of a surface's physical roughness for skin sliding over the surface, various studies have been conducted to understand human tactile sensibility. However, to investigate products in relation to human tactile sensibility, more objective research is needed. This study performed sliding experiments between the skin and the surfaces of phone cases to understand how the texture, friction, and stick-slip characteristics are related. Eight phone case surfaces with different topologies and chemical (or mechanical) compatibilities with skin were prepared and tested multiple times.

Wear Characteristics of Lubricant with Nano-diamond Particles on Al-6061 Aluminum Alloy (나노 다이아몬드 입자를 첨가한 엔진 오일의 알루미늄 6061 합금에 대한 마모 특성)

  • Hwang, Sung-Wan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.16-23
    • /
    • 2021
  • Pin-to-disc wear testing experiments were conducted to investigate the wear characteristics of commercial oil (5W-40) with nano-diamond particles. The upper specimen was a SUJ-2 high-carbon chromium steel ball with a diameter of 4 mm, and the lower specimen was made of the Al-6061 alloy. The applied load was 5 N, and the sliding speed was 0.25 m/s. The wear tests were conducted at a sliding distance of 500 m. The friction coefficients and wear rates of the Al-6061 specimens were tested using commercial oil with different nano-diamond concentrations ranging from 0 to 0.02 wt.%. The addition of nano-diamond particles to commercial oil reduced both the wear rate and coefficient of friction of the Al-6061 alloy. The use of nano-diamond particles as a solid additive in oil lubricants was found to improve the tribological behavior of the Al-6061 alloy. For the Al-6061 alloy, the optimal concentration was found to be 0.005 wt.% in view of the friction coefficient and wear rate. Further investigation is needed to determine the optimal concentration of nano-diamond particles for various loadings, sliding speeds, oil temperatures, and sliding distances.