• Title/Summary/Keyword: Slewing motion

Search Result 14, Processing Time 0.016 seconds

Extension of the LQR to Accomodate Actuator Saturation Bounds for Flexible Space Structures (제한된 제어입력을 갖는 유연우주구조물에 대한 확장된 LQR)

  • Lee, Sang-Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.71-77
    • /
    • 2002
  • We consider the simultaneous slewing and vibration suppression control problem of an idealized structural model which has a rigid hub with two cantilevered flexible appendages and finite tip masses. The finite clement method(FEM) is used to obtain linear finite dimensional equations of motion for the model. In the linear quadratic regulator(LQR) problem, a simple method is introduced to provide a physically meaningful performance index for space structure models. This method gives us a mathematically minor but physically important modification of the usual energy type performance index. A numerical procedure to solve a time-variant LQR problem with inequality control constraints is presented using the method of particular solutions.

Characteristics of Hydrodynamic Interaction on Tug-Barge Using Ship Handling Simulator (선박조종시뮬레이터를 활용한 예부선의 유체력 간섭 특성에 관한 연구)

  • Lee, Sang-Min;Jo, Sang-Hui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • In order to investigate the hydrodynamic interaction between the tug-barge and bank or ship which is crossing to the opposite direction, the towing simulations of tug-barge transportation were performed. Heading of barge, yaw moment and lateral force of tug boat were obtained by this simulation. The characteristics of results were analyzed and the safety towing method for tug-barge operation was proposed. In order to reduce the slewing motion of barge for safe towing operation, the speed of tug boat should be kept slow ahead state with shortened towing line as length of barge within the limits of the possible.

  • PDF

Numerical Simulation of Towing Stability of Barges in Calm Water (정수 중 바지선의 예인안정성에 관한 수치 시뮬레이션)

  • Nam, Bo Woo;Park, Ji Young;Hong, Sa Young;Sung, Hong Gun;Kim, Jong-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.67-73
    • /
    • 2013
  • This paper presents the results of a numerical study on the towing stability of barges. Towing simulations were carried out by using two different numerical models (MMG model and cross-flow model). Stability criteria are also suggested based on the analysis of the linearized governing equations for towed vessel motion. In order to validate the present numerical models, the experimental data of Yasukawa et al. (2006) were used. Simulations were conducted for single and double barges under constant towing speed and direction conditions. The time histories of the heading angle, yaw rate, and towline tension were compared between the numerical results and experiments. The effects of the towline length on the slewing frequency and maximum heading angle were also observed. In addition, a series of numerical simulations using variable hydrodynamic coefficients were performed to investigate the effects of the hydrodynamic forces on the towing stability.

A Study on the Safety Towing System for Barge Using Portable GPS (휴대용 GPS를 이용한 부선의 안전예항시스템 구축에 관한 연구)

  • Lee, Sang-Min;Ahn, Byung-Kil
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.55-59
    • /
    • 2008
  • The tug boat is restricted in her maneuvering ability due to the towed barge, and tug-barge have been strongly affected by the external forces, i.e. the wind, wave, currents, and so on. Therefore it is difficult to get the safety if tug-barge operation. In this study, we propose the basic method to develope the safety towing system for barge using portable GPS which is easily movable and relatively inexpensive. Then we have conducted the test on the real barge and discuss the results.

  • PDF