• Title/Summary/Keyword: Slender Brace

Search Result 5, Processing Time 0.02 seconds

Development of Tension Bracing for Energy Dissipation Capacity (에너지 소산 능력을 가진 인장가새 개발)

  • 최형준;엄승현;김원기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.349-356
    • /
    • 2002
  • Anticipating potential strong earthquakes, bracing dampers for better seismic performance are being developed in Korea, while similar ones are already developed in other countries. But, there are lack of relevant research on Slender Brace Dampers rather than hysteretic dampers, whose concept is also inappropriate for rehabilitation existed slender braced frame. For the development of Slender Brace Damper in slender braced frame, this research investigates Slender Brace Damper possessing various shapes of hyteretic damper through performing experimental test under cyclic loadings. As a result at this paper, Energy dissipation of test specimens (H35B20PS, H35B20TS, H20B60PS) are superior.

  • PDF

Wilshire Grand: Outrigger Designs and Details for a Highly Seismic Site

  • Joseph, Leonard M.;Gulec, C. Kerem;Schwaiger, Justin M.
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • The 1100 foot [335 m] tall Wilshire Grand Center tower under construction in Los Angeles illustrates many key outrigger issues. The tower has a long, narrow floor plan and slender central core. Outrigger braces at three groups of levels in the tower help provide for occupant comfort during windy conditions as well as safety during earthquakes. Because outrigger systems are outside the scope of prescriptive code provisions, Performance Based Design (PBD) using Nonlinear Response History Analysis (NRHA) demonstrated acceptability to the Los Angeles building department and its peer review panel. Buckling Restrained Brace (BRB) diagonals are used at all outrigger levels to provide stable cyclic nonlinear behavior and to limit forces generated at columns, connections and core walls. Each diagonal at the lowest set of outriggers includes four individual BRBs to provide exceptional capacities. The middle outriggers have an unusual 'X-braced Vierendeel' configuration to provide clear hotel corridors. The top outriggers are pre-loaded by jacks to address long-term differential shortening between the concrete core and concrete-filled steel perimeter box columns. The outrigger connection details are complex in order to handle large forces and deformations, but were developed with contractor input to enable practical construction.

Nonlinear Analysis and Design of Rectangular Damper (직사각형 댐퍼의 비선형 해석 및 설계)

  • Eom, Seung Hyeon;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.447-456
    • /
    • 2003
  • In this study, the proper shape of dampers was determined when the outside frame formed a rectangle. The proper shape of dampers is rectangular, having the same ratio as the outside frame. The design was based on the impact energy dissipated by the seismic performance of the mainly rectangular dampers. This study sought to compare both strength and energy dissipation between nonlinear analysis data and experimental data through load-displacement curves. The use of the ANSYS FEM software was suggested to analyze the nonlinear behavior of rectangular dampers subjected to cyclic loading. The target of this study was to determine what shape was efficient for rectangular tensile brace dampers. The safety of the developed rectangular dampers was also checked for better fabrication.

Compressive Behavior of H-section Brace Strengthened by Non-welded Cold-Formed Element (무용접 냉간성형 조립재로 보강한 H형강 가새의 압축거동)

  • Kim, Sun Hee;Kim, Do Bum;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.169-180
    • /
    • 2015
  • Recently, Seismic performance of the building built in the past is required to review, because the code for seismic design have been reinforced. In 2009, if the revised latest criteria of seismic design is applied, the majority the steel structure of the low-rise concentrically braced system is short of the seismic performance. Also, when the steel braces are subject to compressive load, which causes unstable behavior of the structure. In order to verify the compressive behavior of the reinforced braces, structural performance test was conducted with variables of slenderness ratio and the amount of reinforcement. Therefore, this study suggests restraining the bending buckling of slender H-shaped braces to resist compressive force. In order to verify the compressive behavior of the reinforced braces, structural performance test was conducted with variables of slenderness ratio and the amount of reinforcement.

Experimental Evaluation of Flexural Performance Evaluation of Tapered H-Section Beams with Slender Web (춤이 큰 웨브 변단면 H형 보의 휨내력에 대한 실험적 평가)

  • Shim, Hyun Ju;Lee, Seong Hui;Kim, Jin Ho;Lee, Eun Taik;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.483-492
    • /
    • 2007
  • Pre-Engineering Building (PEB) system is one of the most economical structural systems. Tapered members can resist a maximum stress at a single location, whereas stresses of the rest of the members are considerably low. This results in appreciable savings both in terms of materials and construction costs. However, it was appreciated that special consideration would be required for certain aspects of this structural form. In particular, because of their slenderness, webs would buckle laterally and torsionally under the combined action of excessive axial, bending and shear forces. In this study, a total of four large-scale rafters with simple ends were tested. The main parameters were the width-thickness ratio of the web, the stiffener, and the flange brace. The purpose of this experiment is to evaluate the structural stability and to offer back-data on PEB design.