• Title/Summary/Keyword: Sled model

Search Result 28, Processing Time 0.023 seconds

AERODYNAMIC STUDY ON BOBSLEIGH BUMPER SHAPE (봅슬레이 범퍼 형상에 대한 공력학적 연구)

  • Lee, Y.N.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.37-45
    • /
    • 2015
  • A parametric study on the shapes of bobsleigh bumpers has been performed to reduce the aerodynamic drag. Effects of geometric parameters, such as leading angle of leading bumper, the ratio of minimum width to maximum width of leading bumper, the ratio of leading bumper length to trailing bumper length, trailing angle of trailing bumper, and the ratio of bumper height to installation location of bumper from the bottom of bobsleigh, on the aerodynamic performance of the bobsleigh were estimated using 3-D Reynolds-averaged Navier-Stokes equations. The turbulence was analyzed using the shear stress turbulence model. Reynolds number based on the hydraulic diameter of the external flow channel was in the range of 150,000~1,000,000. Numerical results for drag coefficient were validated compared to experimental data. Ranges of the five geometric parameters were determined according to the rule of Federation Internationale de Bobsleigh et de Tobaganning. The aerodynamic performance of the bobsleigh sled was most sensitive to the leading angle of leading bumper and the ratio of minimum width to maximum width of leading bumper.

Optimization of Seat belt Load Limiter for Crashworthiness (안전벨트 충돌하중특성 최적화)

  • Seo, bo pil;Choi, sung chul;Kim, beom jung;Han, sung jun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.5-10
    • /
    • 2011
  • Under the full frontal crash event, seatbelt system is the most typical and primary restraint device that prevents the second impact between an occupant and vehicle interior parts by limiting the forward motion of an occupant in the vehicle occupant packaging space. Today's restraint systems typically include the three-point seat belt with the pretensioner and the load limiter. A pretensioner preemptively tightens the seat belts removing any slack between a passenger and belt webbing which leads to early restraint of a passenger. After that a load limiter controls level of belt load by releasing the belt webbing to reduce occupant injurys. In this study, load characteristics of load limiters are optimized by the computer simulation with a MADYMO model for a frontal impact against the rigid wall at 56kph and then we suggest performance requirements. We derived optimum load characteristic from the results using four vehicle simulation models represented by the vehicle. Based on the results, we suggest the performance from the results of the second optimization using the simulation considering the design and the standardization. Finally, the performance requirements is verified by the sled tests including the load limiter device for the full vehicle condition.

Shock Analysis of Optical Disk Drive Considering Rotational Effect (회전 효과를 고려한 광디스크 드라이브의 충격해석)

  • Lim, Seung-Ho;Park, No-Cheol;Park, Young-Pil;Hwang, Hyo-Kune;Seo,, Jeong-Kyo;Yoo, Seung-Hon;Choi, In-Ho;Min, Byung-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.622-625
    • /
    • 2008
  • SIL-based optical disk drive will be promising candidate of next-generation storage devices. However, a near-field optical disk drive requires the robustness to external shock because of extremely small gap between SIL and media. Especially, high-level shock damages permanently to SIL and it makes difficulties in general application. To study the likelihood of failure, the shock analysis must be performed over all others. This research explores the dynamic characteristics of rotating disk through FEM which is compared to analytical solution and experimental modal analysis. We also develop the finite element model of an optical disk drive, which includes rubber mounts, sled base, rotating disk and pickup assembly, and simulate the shock response.

  • PDF

An Anti-vibration Design of Slim-type Optical Disk Drive (슬림형 광 디스크 드라이브의 방진설계)

  • Kim, Nam-Woong;Kim, Kug-Weon;Hong, Goo;Chung, Mun-Chae;Kim, Wae-Yeul
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.324-330
    • /
    • 1999
  • With the increase of track density, high rotational speed and the compatibility for various media such as CD-ROM, CD-R/RW, DVD-ROM/RAM/RW etc. in optical disk drive, the effective anti-vibration design is so crucial for robust operaton. Especailly when the drive is self-excited by unbalanced disk, internal sled base vibration and its external transmission to the case bring about so severe problem. Generally these two consideration points the practical anti-vibration design process to control thses two conflictive properties using finite element analysis. As an example of the design process, Duro 25 and 40 visco-elastic rubber mount was selected and analyzed. The stiffness obtained from FEM rubber model was well matched with the experiments. Also it was confirmed that the internal and external vibration induced from unbalanced disk have good agreement with experimental results. The proposed design process is adopted to the slim-type optical disk drive.

  • PDF

Behavior and Injury Investigation of Reclined Occupants in Frontal Crash (정면충돌 시 편의자세 승객의 거동 및 상해 연구)

  • Youngju Jo;Changmin Beak;Seongho Kim;Kyeonghee Han;Kyungjin Kim;Jaeho Shin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.4
    • /
    • pp.95-101
    • /
    • 2023
  • As the popularization of autonomous vehicles is anticipated, it is expected that the variety of passenger postures will diversify. However, the current vehicle safety system is expected to be inadequate for accommodating these diverse passenger postures, particularly in reclined positions where severe injuries have been reported in frontal collisions. Therefore, it is necessary to investigate the biomechanical responses and tolerances of occupants in reclined postures. In this study, the behavior and injuries of a Hybrid-III dummy model in a reclined position are analyzed through frontal collision sled simulations equipped with the semi-rigid seat provided by the previous study, three-point safety belt with pretensioner and load limiter, and airbag models. The results are evaluated by comparing thouse reponses with post-mortem human surrogate (PMHS) data, and the findings are expected to be applicable to the basic design of a new restraint system suitable for various postures in autonomous vehicles.

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part I: Model test

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3068-3084
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to experimentally assess the damage and vibrations of NPP buildings subjected to aircraft crash. In present Part I, two shots of reduce-scaled model test of aircraft impacting on NPP building were carried out. Firstly, the 1:15 aircraft model (weighs 135 kg) and RC NPP model (weighs about 70 t) are designed and prepared. Then, based on the large rocket sled loading test platform, the aircraft models were accelerated to impact perpendicularly on the two sides of NPP model, i.e., containment and auxiliary buildings, with a velocity of about 170 m/s. The strain-time histories of rebars within the impact area and acceleration-time histories of each floor of NPP model are derived from the pre-arranged twenty-one strain gauges and twenty tri-axial accelerometers, and the whole impact processes were recorded by three high-speed cameras. The local penetration and perforation failure modes occurred respectively in the collision scenarios of containment and auxiliary buildings, and some suggestions for the NPP design are given. The maximum acceleration in the 1:15 scaled tests is 1785.73 g, and thus the corresponding maximum resultant acceleration in a prototype impact might be about 119 g, which poses a potential threat to the nuclear equipment. Furthermore, it was found that the nonlinear decrease of vibrations along the height was well reflected by the variations of both the maximum resultant vibrations and Cumulative Absolute Velocity (CAV). The present experimental work on the damage and dynamic responses of NPP structure under aircraft impact is firstly presented, which could provide a benchmark basis for further safety assessments of prototype NPP structure as well as inner systems and components against aircraft crash.

Comfort Analysis of Mono-ski with Hydraulic Absorber (모노스키 유압 완충장치 특성에 따른 탑승 안락감 평가)

  • Cho, Hyeon-Seok;Park, Jin-Kook;Kim, Gyoo-Seok;Mun, Mu-Sung;Kim, Chang-Boo
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.131-140
    • /
    • 2015
  • The mono-ski for the paraplegia designed to skiing is formed as seat bucket on the sled. The impact force transferred by snow surface during skiing is absorbed by the leg joints of normal human, but it is transferred to the human body on the seat when using mono-ski. Most of commercially available mono-ski have absorbing device and link mechanism between seat and ski mount in order to complement it. In this study we developed the comfort evaluation model that could provide skiing simulation of mono-ski with hydraulic damper and analyzed vibrational acceleration occurred during skiing uneven surface. The evaluation method used in this study is the international standard BS6841. We evaluated comfort performance of mono-ski in accordance with nozzle adjustment of hydraulic damper.

The Development of an Adjustable Dual-Level Load Limiter (적응형 듀얼레벨 로드리미터 개발)

  • Lee, In-Beom;Kang, Shin-You;Kim, Seock-Hyun;Ryoo, Won-Wha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1187-1191
    • /
    • 2011
  • In this paper, the development of an adjustable load limiter is presented, which is a component of the seat belt. The adjustable load limiter is loaded at different levels for varied weights and heights of occupant. The recent regulation FMVSS 208 demands strict safety standards for different percentiles of dummy size. In this work, high- and low-level load conditions are proposed according to dummy scale and thoracic injury criteria. The suggested load conditions were verified by performing a sled test using the benchmark model. A dual-level load limiter has been developed on the basis of these tests. Experiments were conducted on the product performance, and finite element analysis was carried out; the results confirmed the points for improvement.