• Title/Summary/Keyword: Slant angle

Search Result 81, Processing Time 0.026 seconds

MULTI-PHYSICAL SIMULATION FOR THE DESIGN OF AN ELECTRIC RESISTOJET GAS THRUSTER IN THE NEXTSAT-1 (차세대 인공위성 전기저항제트 가스추력기의 다물리 수치모사)

  • Chang, S.M.;Choi, J.C.;Han, C.Y.;Shin, G.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.112-119
    • /
    • 2016
  • NEXTSat-1 is the next-generation small-size artificial satellite system planed by the Satellite Technology Research Center(SatTReC) in Korea Advanced Institute of Science and Technology(KAIST). For the control of attitude and transition of the orbit, the system has adopted a RHM(Resisto-jet Head Module), which has a very simple geometry with a reasonable efficiency. An axisymmetric model is devised with two coil-resistance heaters using xenon(Xe) gas, and the minimum required specific impulse is 60 seconds under the thrust more than 30 milli-Newton. To design the module, seven basic parameters should be decided: the nozzle shape, the power distribution of heater, the pressure drop of filter, the diameter of nozzle throat, the slant length and the angle of nozzle, and the size of reservoir, etc. After quasi one-dimensional analysis, a theoretical value of specific impulse is calculated, and the optima of parameters are found out from the baseline with a series of multi-physical numerical simulations based on the compressible Navier-Stokes equations for gas and the heat conduction energy equation for solid. A commercial code, COMSOL Multiphysics is used for the computation with a FEM (finite element method) based numerical scheme. The final values of design parameters indicate 5.8% better performance than those of baseline design after the verification with all the tuned parameters. The present method should be effective to reduce the time cost of trial and error in the development of RHM, the thruster of NEXTSat-1.

Mapping the East African Ionosphere Using Ground-based GPS TEC Measurements

  • Mengist, Chalachew Kindie;Kim, Yong Ha;Yeshita, Baylie Damtie;Workayehu, Abyiot Bires
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • The East African ionosphere (3°S-18°N, 32°E-50°E) was mapped using Total Electron Content (TEC) measurements from ground-based GPS receivers situated at Asmara, Mekelle, Bahir Dar, Robe, Arbaminch, and Nairobi. Assuming a thin shell ionosphere at 350 km altitude, we project the Ionospheric Pierce Point (IPP) of a slant TEC measurement with an elevation angle of >10° to its corresponding location on the map. We then infer the estimated values at any point of interest from the vertical TEC values at the projected locations by means of interpolation. The total number of projected IPPs is in the range of 24-66 at any one time. Since the distribution of the projected IPPs is irregularly spaced, we have used an inverse distance weighted interpolation method to obtain a spatial grid resolution of 1°×1° latitude and longitude, respectively. The TEC maps were generated for the year 2008, with a 2 hr temporal resolution. We note that TEC varies diurnally, with a peak in the late afternoon (at 1700 LT), due to the equatorial ionospheric anomaly. We have observed higher TEC values at low latitudes in both hemispheres compared to the magnetic equatorial region, capturing the ionospheric distribution of the equatorial anomaly. We have also confirmed the equatorial seasonal variation in the ionosphere, characterized by minimum TEC values during the solstices and maximum values during the equinoxes. We evaluate the reliability of the map, demonstrating a mean error (difference between the measured and interpolated values) range of 0.04-0.2 TECU (Total Electron Content Unit). As more measured TEC values become available in this region, the TEC map will be more reliable, thereby allowing us to study in detail the equatorial ionosphere of the African sector, where ionospheric measurements are currently very few.

Development of Gas-mask Spectacles (방독면 안경 개발)

  • Lee, Jeung-Young;Parkm Jeong-Sik;Jang, Woo-Yeong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.4
    • /
    • pp.9-12
    • /
    • 2008
  • Purpose: Current gas-mask is very uncomfortable structure for spectacles wearer. Improving this problem can aid military men and firemen to protect themselves and rescue other person. Methods: we changed the structure from dual type of outward lens and inward lens into a single type structure. we attached acrylic frame to gas-mask instead of outward lens and protected the gas inflow by shutting the gab of lens and frame using silicon shield, and made the frame "S" style for removing astigmatism and maintaining of vertex distance. Results: It was possible to correct visual acuity and gas shield, and could changed the lens like a common spectacles. The new type of gas-mask spectacles could remove 0.53D~1.78D astigmatism occurred from the slant of eyesight and lens surface, 0.07D~0.66D overcorrection occurred from short vertex distance, and 0.1D~0.3D astigmatism occurred from pantoscopic angle. Conclusion: Because new type of gas-mask spectacles had clear visual field, it was expected to improve fighting power and rescue ability.

  • PDF

A Numerical Study on Flows Over Two-Dimensional Simplified Vehicle-Like Body (단순화된 2차원 자동차형 물체주위 유동에 관한 수치해석적 연구)

  • 강신형;이영림;유정열;이택시;김응서
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.277-286
    • /
    • 1989
  • Turbulent flows around two-dimensional vehicle-like bodies in ground proximity are numerically simulated. The Reynolds averaged Navier-Stokes equations with a k-.epsilon. turbulence model are numercally solved, and a body-fitted coordinate system is used. It is shown that the simulation is acceptable in comparison with limitted data measured in the wind-tunnel. According to numerical simulations, drag coefficients are under-estimated and lift coefficients are over-estimated during the model test in the wind-tunnel if the ground is fixed. Such ground effects are reduced as Reynolds number is increased. Reducing the gap between the vehicle and the ground make drag coefficients smaller and lift coefficients larger. The changes in static pressure distributions on the bottom and the rear surface play dominent roles in determination of the drag and the lift of the body in ground proximity. Drag component less than 10% of the total amount is contributed by skin-frictions. When the slant-angle of the body is reduced, the drag shows its minimum value and the lift shows its maximum value at about 22 degree.

A Study on Fatigue Fracture Behavior of Laser Beam Welding and Steel with Different Materials ($CO_2$ 레이저 용접 이종재료강의 피로파괴거동에 관한 연구)

  • Han, M.S.;Suh, J.;Lee, J.H.;Kim, J.O.;Jeon, S.M.
    • Laser Solutions
    • /
    • v.9 no.2
    • /
    • pp.1-9
    • /
    • 2006
  • In this paper, we investigated the characteristics of fatigue fracture on TB(Tailored Blank) weldment by comparing the fatigue crack propagation characteristics of base metal with those of TB welded sheet used for vehicle body panels. We also investigated the influence of center crack on the fatigue characteristic of laser weld sheet of same thickness. We conducted an experiment on fatigue crack propagation on the base metal specimen of 1.2mm thickness of cold-rolled metal sheet(SPCSD) and 2.0mm thickness of hot-rolled metal sheet(SAPH440) and 1.2+2.0mm TB specimen. We also made an experiment on fatigue crack propagation on 2.0+2.0mm and 1.2+1.2mm thickness TB specimen which had center crack. The characteristics of fatigue crack growth on the base metal were different from those on 1.2+2.0mm thickness TB specimen. The fatigue crack growth rate of the TB welded specimens is slower in low stress intensity factor range $({\Delta}K)$ region and faster in high${\Delta}K$ region than that of the base metal specimens. The slant crack angle slightly influenced the crack propagation of the TB specimen of 2.0+2.0mm thinkness.

  • PDF

An Implementation of Interferometric Radar Altimeter Simulator (간섭계 레이더 고도계용 시뮬레이터 구현)

  • Paek, Inchan;Lee, Sangil;Yoo, Kyungju;Jang, Jong Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.81-87
    • /
    • 2015
  • We present an implementation result of a computer GUI-based simulator using MATLAB to verify the performance of interferometric radar altimeter(IRA) which is possible to measure the slant range altitude and the cross-track angle to the nearest point for terrain aided navigation(TAN). After a brief description of the principle of TAN and IRA, we present that the grids are divided for the modeling of the reflected signal in digital elevation map(DEM) and so the radar cross section(RCS) of each grid is calculated and the signal-noise ratio(SNR) of the reflected signal in the radar beam width. And the signal processing procedures of the IRA and the structure of the IRA simulator are shown.

A Passport Recognition and face Verification Using Enhanced fuzzy ART Based RBF Network and PCA Algorithm (개선된 퍼지 ART 기반 RBF 네트워크와 PCA 알고리즘을 이용한 여권 인식 및 얼굴 인증)

  • Kim Kwang-Baek
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.17-31
    • /
    • 2006
  • In this paper, passport recognition and face verification methods which can automatically recognize passport codes and discriminate forgery passports to improve efficiency and systematic control of immigration management are proposed. Adjusting the slant is very important for recognition of characters and face verification since slanted passport images can bring various unwanted effects to the recognition of individual codes and faces. Therefore, after smearing the passport image, the longest extracted string of characters is selected. The angle adjustment can be conducted by using the slant of the straight and horizontal line that connects the center of thickness between left and right parts of the string. Extracting passport codes is done by Sobel operator, horizontal smearing, and 8-neighborhood contour tracking algorithm. The string of codes can be transformed into binary format by applying repeating binary method to the area of the extracted passport code strings. The string codes are restored by applying CDM mask to the binary string area and individual codes are extracted by 8-neighborhood contour tracking algerian. The proposed RBF network is applied to the middle layer of RBF network by using the fuzzy logic connection operator and proposing the enhanced fuzzy ART algorithm that dynamically controls the vigilance parameter. The face is authenticated by measuring the similarity between the feature vector of the facial image from the passport and feature vector of the facial image from the database that is constructed with PCA algorithm. After several tests using a forged passport and the passport with slanted images, the proposed method was proven to be effective in recognizing passport codes and verifying facial images.

  • PDF

Error Budget Analysis for Geolocation Accuracy of High Resolution SAR Satellite Imagery (고해상도 SAR 영상의 기하 위치정확도 관련 중요변수 분석)

  • Hong, Seung Hwan;Sohn, Hong Gyoo;Kim, Sang Pil;Jang, Hyo Seon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.447-454
    • /
    • 2013
  • The geolocation accuracy of SAR satellite imagery is affected by orbit and sensor information and external variables such as DEM accuracy and atmospheric delay. To predict geolocation accuracy of KOMPSAT-5 and KOMPSAT-6, this paper uses TerraSAR-X imagery which has similar spec. Simulation data for sensitivity analysis are generated using range equation and doppler equation with several key error sources. As a result of simulation analysis, the effect of sensor information error is larger than orbit information error. Especially, onboard electronic delay needs to be monitored periodically because this error affects geolocation accuracy of slant range direction by 30m. Additionally, DEM accuracy causes geolocation error by 20~30m in mountainous area and atmospheric delay can occur by 5m in response to atmospheric condition and incidence angle.

Characterization of Radiation Field in the Steam Generator Water Chambers and Effective Doses to the Workers (증기발생기 수실의 방사선장 특성 및 작업자 유효선량의 평가)

  • Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.215-223
    • /
    • 1999
  • Characteristics of radiation field in the steam generator(S/G) water chamber of a PWR were investigated and the anticipated effective dose rates to the worker in the S/G chamber were evaluated by Monte Carlo simulation. The results of crud analysis in the S/G of the Kori nuclear power plant unit 1 were adopted for the source term. The MCNP4A code was used with the MIRD type anthropomorphic sex-specific mathematical phantoms for the calculation of effective doses. The radiation field intensity is dominated by downward rays, from the U-tube region, having approximate cosine distribution with respect to the polar angle. The effective dose rates to adults of nominal body size and of small body size(The phantom for a 15 year-old person was applied for this purpose) appeared to be 36.22 and 37.06 $mSvh^{-1}$) respectively, which implies that the body size effect is negligible. Meanwhile, the equivalent dose rates at three representative positions corresponding to head, chest and lower abdomen of the phantom, calculated using the estimated exposure rates, the energy spectrum and the conversion coefficients given in ICRU47, were 118, 71 and 57 $mSvh^{-1}$, respectively. This implies that the deep dose equivalent or the effective dose obtained from the personal dosimeter reading would be the over-estimate the effective dose by about two times. This justifies, with possible under- or over- response of the dosimeters to radiation of slant incidence, necessity of very careful planning and interpretation for the dosimetry of workers exposed to a non-regular radiation field of high intensity.

  • PDF

Examining Influences of Asian dust on SST Retrievals over the East Asian Sea Waters Using NOAA AVHRR Data (NOAA AVHRR 자료를 이용한 해수면온도 산출에 황사가 미치는 영향)

  • Chun, Hyoung-Wook;Sohn, Byung-Ju
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.1
    • /
    • pp.45-59
    • /
    • 2009
  • This research presents the effect of Asian dust on the derived sea surface temperature (SST) from measurements of the Advanced Very High Resolution Radiometer (AVHRR) instrument flown onboard NOAA polar orbiting satellites. To analyze the effect, A VHRR infrared brightness temperature (TB) is estimated from simulated radiance calculated from radiative transfer model on various atmospheric conditions. Vertical profiles of temperature, pressure, and humidity from radiosonde observation are used to build up the East Asian atmospheric conditions in spring. Aerosol optical thickness (AOT) and size distribution are derived from skyradiation measurements to be used as inputs to the radiative transfer model. The simulation results show that single channel TB at window region is depressed under the Asian dust condition. The magnitude of depression is about 2K at nadir under moderate aerosol loading, but the magnitude reaches up to 4K at slant path. The dual channel difference (DCD) in spilt window region is also reduced under the Asian dust condition, but the reduction of DCD is much smaller than that shown in single channel TB simulation. Owing to the depression of TB, SST has cold bias. In addition, the effect of AOT on SST is amplified at large satellite zenith angle (SZA), resulting in high variance in derived SSTs. The SST depression due to the presence of Asian dust can be expressed as a linear function of AOT and SZA. On the basis of this relationship, the effect of Asian dust on the SST retrieval from the conventional daytime multi-channel SST algorithm can be derived as a function of AOT and SZA.