• Title/Summary/Keyword: Slag-soil mixtures

Search Result 16, Processing Time 0.024 seconds

Geotechnical Characteristics of Reduced Slag-soil Mixtures in Electric Furnace (전기로 제강 환원 슬래그 혼합토의 지반공학적 특성)

  • Shin, Jaewon;Yoon, Yeowon;Yoon, Gillim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.31-37
    • /
    • 2011
  • Only a few studies have been conducted using reduced slag as recycled material. The reduced slag in electric furnace is produced as a by-product in making a steel and a few applications of the reduced slag as expensive additives and bonding materials or as the stabilized soils was reported. The purpose of this study is to present the feasibility of the reduced slag as recycled material, especially, in a field of civil engineering. In order to achieve the purpose experiments such as SEM and XRF analysis was conducted for the reduced slag in electric furnace. Based on the results various geotechnical experiments were conducted to know engineering properties of slag-soil mixtures. Weathered soils and clay are mixed with reduced slag for various ratios. As the ratio of reduced slag to weathered soil increases, the maximum dry unit weight of the mixture decreased with increasing optimum moisture content. The results indicates that there is no effect on a reduced slag by compaction efforts. The shear strengths of the weathered soil-slag mixtures are slightly higher or similar to those of weathered soils. The permeability of the weathered soil-slag mixtures is similar to that of silty or sandy soils. Therefore, it is possible to use the mixtures as embankment or backfill materials in the fields. The unconfined strength of the mixtures of reduced slag and clay is higher than that of clay and it tends to increase with the curing time. Therefore it can be used to improve the soft ground.

Effect of slag and bentonite on shear strength parameters of sandy soil

  • Sabbar, Ayad Salih;Chegenizadeh, Amin;Nikraz, Hamid
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.659-668
    • /
    • 2018
  • A series of direct shear tests were implemented on three different types of specimens (i.e., clean Perth sand, sand containing 10, 20 and 30% bentonite, sand containing 1, 3 and 5% slag, and sand containing 10, 20 and 30% bentonite with increasing percentages of added slag (1%, 3% and 5%). This paper focuses on the shear stress characteristics of clean sand and sand mixtures. The samples were tested under different three normal stresses (100, 150 and 200 kPa) and three curing periods of no curing time, 7 and 14 days. It was observed that the shear stresses of clean sand and mixtures were increased with increasing normal stresses. In addition, the use of slag has improved the shear strength of the sand-slag mixtures; the shear stresses rose from 128.642 kPa in the clean sand at normal stress of 200 kPa to 146.89 kPa, 154 kPa and 161.14 kPa when sand was mixed with 1%, 3% and 5% slag respectively and tested at the same normal stress. Internal friction angle increased from $32.74^{\circ}$ in the clean sand to $34.87^{\circ}$, $37.12^{\circ}$ and $39.4^{\circ}$ when sand was mixed with 1%, 3% and 5% slag respectively and tested at 100, 150, and 200 kPa normal stresses. The cohesion of sand-bentonite mixtures increased from 3.34 kPa in 10% bentonite to 22.9 kPa, 70.6 kPa when sand was mixed with 20% and 30% bentonite respectively. All the mixtures of clean sand, different bentonite and slag contents showed different behaviour; some mixtures exhibited shear stress more than clean sand whereas others showed less than clean sand. The internal friction angle increased, and cohesion decreased with increasing curing time.

Effect of slag on stabilization of sewage sludge and organic soil

  • Kaya, Zulkuf
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.689-707
    • /
    • 2016
  • Soil stabilization is one of the useful method of ground improvement for soil with low bearing capacity and high settlement and unrequired swelling potential. Generally, the stabilization is carried out by adding some solid materials. The main objective of this research was to investigate the feasibility of stabilization of organic soils and sewage sludge to obtain low cost alternative embankment material by the addition of two different slags. Slags were used as a replacement for weak soil at ratios of 0%, 25%, 50%, 75% and 100%, where sewage sludge and organic soil were blended with slags separately. The maximum dry unit weights and the optimum water contents for all soil mixtures were determined. In order to investigate the influence of the slags on the strength of sewage sludge and organic soil, and to obtain the optimal mix design; compaction tests, the California bearing ratio (CBR) test, unconfined compressive strength (UCS) test, hydraulic conductivity test (HCT) and pH tests were carried out on slag-soil specimens. Unconfined compressive tests were performed on non-cured samples and those cured at 7 days. The test results obtained from untreated specimens were compared to tests results obtained from soil samples treated with slag. Laboratory tests results indicated that blending slags with organic soil or sewage sludge improved the engineering properties of organic or sewage sludge. Therefore, it is concluded that slag can be potentially used as a stabilizer to improve the properties of organic soils and sewage sludge.

Assessment of Ion Leaching and Recycling Potential of Steel Slag Mixed with Clay (점토와 혼합된 제강슬래그의 이온 용출 및 재활용 가능성 평가)

  • Hyeongjoo Kim;Hyeonki Lee;Taegew Ham;Sohee Jeong;Hyeongsoo Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.5
    • /
    • pp.39-47
    • /
    • 2024
  • In this study, the environmental implications of electric arc furnace steel slag, commonly used in road construction and soil reinforcement, were examined. Experiments were conducted to assess the leaching of heavy metals based on particle size and to investigate ion leaching from specimens with varying mixtures of steel slag and clay. The official waste test revealed no detectable heavy metals in the sample items. However, when subjected to leaching experiments and analyzed using ICP-OES, certain heavy metals were found. The reaction of steel slag with water, facilitated by free CaO within the slag, was identified as the cause of leaching. Results showed that aluminum, exhibiting the highest leaching rate, displayed an inverse relationship with particle size. In mixed soil containing steel slag and clay, higher steel slag content resulted in increased aluminum leaching. Nonetheless, the quantity of leached aluminum was notably lower in mixed soil compared to pure steel slag. Furthermore, leaching of other heavy metals remained within acceptable limits. These findings suggest that recycling mixed soil of steel slag and clay for road construction or soil stabilization presents reduced environmental risks compared to using steel slag alone. Utilizing such mixtures could offer an environmentally sustainable and safe alternative.

Environmental Effect of the Reduced Slag in the Electric Furnace (전기로 제강 환원슬래그 혼합토의 환경적 영향)

  • Na, Hyunsu;Yoon, Yeowon;Yoon, Gillim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.23-29
    • /
    • 2011
  • The oxidation slag has been widely used in civil engineering project, whereas the reduced slag from electric furnace has yet to be applied. Consequently in order to find out the recycling method in civil engineering field, the mineral compositions of the reduced slag were analyzed and some tests on water quality were performed to estimate the potential release of toxic compounds. Slag-soil mixtures of 0, 10, 20 and 30%(dry weight) soil were prepared in lysimeter columns and the effluents were collected with the period of one, two and four week options in closed system, respectively. The result from qualitative and quantitative analysis using X-ray Diffraction(XRD) and X-ray Fluorescence(XRF) indicates that the main mineral of the reduced slag is $Ca_2(SiO_4)$, a kind of calcium silicate. Also, the leaching medium analyzed by Inductively Coupled Plasma Optical Emission Spectroscopy(ICP-OES) showed that main heavy metals such as Al, Fe and Mn are included in the reduced slag due to the effect of steel production process. It can be seen that the leachate does not violate the regulation guide line of waste material of heavy metal. Also the pH levels were increased from pH 6.9 for 0% soil to pH 10 for 30% soil. However the influence on leachate circulation period of one through four weeks was negligible.

Reducing Soil Loss of Sloped Land using Lime-Organic Compost mixtures under Rainfall Simulation (인공강우 모사를 통한 석회/유기퇴비 혼합물의 경사지 토양유실 억제효과)

  • Koh, Il-Ha;Roh, Hoon;Hwang, Wonjae;Seo, Hyunggi;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.3
    • /
    • pp.43-50
    • /
    • 2018
  • In a previous study, the feasibility of four materials (bentonite, steelmaking slag, lime and organic compost) to induce soil aggregate formation was assessed and the mixtures of organic compost and lime were chosen as most effective amendments in terms of cost benefit. This work is a subsequent study to evaluate the effectiveness of those amendments in reducing soil loss in $15^{\circ}$ sloped agricultural area by using rainfall simulation test. Three different soils were treated with two conditions of organic compost/lime mixtures (2% + 2%, 3% + 1%, w/w). In the amended soils, soil fertility was increased due to the increase of CEC, T-N, and T-P. During the rainfall simulation, suspended solid in run-off water from amended soil were reduced by 43% ~ 78%. When the content of organic compost was higher than that of lime, reduction of soil loss was also increased by 67% ~ 78%. Sediment discharge was also decreased by 72% ~ 96% in the amended soil. Similar to the suspended solid analysis, higher organic compost content led to more reduction of soil discharging, which implies organic compost is more effective than lime in reducing soil loss. The overall result suggests that the mixtures of organic compost and lime could be used as amendment materials to reduce soil loss in sloped farmland.

Effect of Acidic Leachate on the Cement-based Landfill Soil Liner System (고화토차수층에 대한 산성침출수의 영향과 대책방안 - 산업부산물(고로슬래그, 플라이애쉬) 재활용 방안 중심으로 -)

  • Cho, Jae-Beom;Hyun, Jae-Hyuk;Lee, Jong-Deuk;Park, Joung-Ku
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.265-269
    • /
    • 2006
  • This study was to investigate the effect of acidic leachate on the landfill liner system and healing of cracks by using industrial by-products; BFS(Blast Furnace Slag) and FA(Fly Ash). From the results of pH measurement, for OPC(Ordinary Portland Cement) and DM(Dredged Mud) mixtures immersed acidic leachate, the initial pH($4.5{\sim}5.5$) was heavily increased to approximately 10 after 60 days experiment due to the production of 2 mole $OH^-$ which was occurred by hydrolysis of CaO and MgO etc.. Meanwhile, the initial pH of acidic leachate immersed DM mixtures with BFS and FA respectively was lasted for longer period as compared to the comparison. The reason was that production of low Ca C-S-H hydrates which stabilized in acidic liquid. The physical properties(compressive strength, hydraulic conductivity) of DM mixtures added BFS and FA was improved. It was concluded that the dissolution of hydrates was disturbed by high alkalinity of BFS and FA.

Effect of soil-ameliorator mixtures on nutrient leaching in sandy paddy soil (사질답토양(砂質畓土壤)에 수종(數種) 개량제(改良劑) 시용(施用)이 양분용탈(養分溶脫)에 미치는 영향(影響))

  • Ahn, Sang-Bae;Park, Jun-Kyu;Yeon, Beong-Yeal;Yuk, Chang-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.2
    • /
    • pp.131-138
    • /
    • 1987
  • Experimental informations on the possible alternative resources of soil addition in sandy paddy soils were obtained by applying fertilizer N, P, and K to the top of 26 cm long columns containing the soil-ameliorator mixture and by determining the concentration and leaching loss of nutrients in percolated water and permeability. 1. Addition of red earth and compost to soils decreased pronouncedly the permeability. Relative magnitude of permeability was compost+slag+red earth > compost+red earth > compost > red earth > compost+slag > slag > non-added soil. 2. Concentration and leaching loss of $NH_4-N$ and $SiO_2$ were high by addition of compost-slag or red earth mixture to soils. The present of these nutrients in soils after experiment was, also, higher than that in non-added soil and in red earth to soils. 3. Those of K, Ca, and Mg were similar to $NH_4-N$ and $SiO_2$. Especially, leaching loss and present of K in soils by addition of compost to soils were higher dramatically than those of non-added soil and of red earth to soils. 4. Those of $Fe^{{+}{+}}$ in non-added soil were much higher than those by addition of compost and slag to soils. These values were the highest in 12 days after submergence, while these of $Mn^{{+}{+}}$ the lowest. 5. Concentration of $NH_4-N$ was high by addition of compost to soils, while the present of it in soils after experiment was tended to be contrary.

  • PDF

A study of the fresh properties of Recycled ready-mixed soil materials (RRMSM)

  • Huang, Wen-Ling;Wang, Her-Yung;Chen, Jheng-Hung
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.787-799
    • /
    • 2016
  • Climate anomalies in recent years, numerous natural disasters caused by landslides and a large amount of entrained sands and stones in Taiwan have created significant disasters and greater difficulties in subsequent reconstruction. How to respond to these problems efficaciously is an important issue. In this study, the sands and stones were doped with recycled materials (waste LCD glass sand, slag powder), and material was mixed for recycled ready-mixed soil. The study is based on security and economic principles, using flowability test to determine the water-binder ratio (W/B=2.4, 2.6, and 2.8), a fixed soil: sand ratio of 6:4 and a soil: sand: glass ratio of 6:2:2 as fine aggregate. Slag (at concentrations of 0%, 20%, and 40%) replaced the cement. The following tests were conducted: flowability, initial setting time, unit weight, drop-weight and compressive strength. The results show that the slump values are 220 -290 mm, the slump flow values are 460 -1030 mm, and the tube flow values are 240-590 mm, all conforming to the objectives of the design. The initial setting times are 945-1695 min. The unit weight deviations are 0.1-0.6%. The three groups of mixtures conform to the specification, being below 7.6 cm in the drop-weight test. In the compressive strength test, the water-binder ratios for 2.4 are optimal ($13.78-17.84kgf/cm^2$). The results show that Recycled ready-mixed soil materials (RRMSM) possesses excellent flowability. The other properties, applied to backfill engineering, can effectively save costs and are conducive to environmental protection.

Flow and Compressive Strength Properties of Low-Cement Soil Concrete (저시멘트 소일콘크리트의 유동성 및 압축강도 특성)

  • Park, Jong-Beom;Yang, Keun-Hyeok;Hwang, Chul-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • This study examined the effect of binder-to-soil ratio(B/S) and water-to-binder ratio(W/B) on the flow and compressive strength development of soil concrete using high-volume supplementary cementitious materials. As a partial replacement of ordinary portland cement, 10% by-pass dust, 40% ground granulated blast-furnace slag, and 25% circulating fluidized bed combustion fly ash were determined in the preliminary tests. Using the low-cement binder incorporated with clay soil or sandy soil, a total of 18 soil concrete mixtures was prepared. The flow of the soil concrete tended to increase with the increase in W/B and B/S, regardless of the type of soils. The compressive strength was commonly higher in sandy soil concrete than in clay soil concrete with the same mixture condition. Considering the high-workability and compressive strength development, it could be recommended for low-cement soil concrete to be mixed under the following condition: B/S of 0.35 and W/B of 175%.