• Title/Summary/Keyword: Slag composition

Search Result 139, Processing Time 0.023 seconds

Thermodynamic of Phosphorus in FeO-MnO-CaO-SiO2-MgOsatd. Slag Systems (FeO-MnO-CaO-SiO2-MgOsatd. 슬래그에서의 P의 열역학적 거동)

  • Cho, Moon Kyung;Park, Kyung Ho;Min, Dong Joon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.188-194
    • /
    • 2009
  • Recently, new extraction technology for manganese nodule has been developed as alternative noble metallic resources. It is important to understand thermodynamic behaviors of phosphorus in low basic slag system from the viewpoint of the refining processing optimization. Thermodynamic behaviors of phosphorus in the $FeO-MnO-CaO-SiO_2-MgO_{satd.}$ slag system were investigated at 1723 K with various oxygen potential and slag composition of low basicity. The experimental results for dependence of phosphorus on oxygen potential and slag basicity indicated that the dissolution mechanism of phosphorus into slag of low basicity could be derived as follows; $[P]+5/4O_2+(O^{2-})=({PO_{3.5}}^{2-})$ Present experimental results implied that stability of phosphorus in slag would be depended on both of $O^{2-}$ (basicity) and content of $Ca^{2+}$ in molten slag. The thermodynamic effect of FeO, MnO and $Na_2O$ on low basicity on phosphate capacity was discussed.

Thermal and Mechanical Properties of Electro-Slag Cast Steel for Hot Working Tools

  • Moon Young Hoon;Kang Boo Hyun;Van Tyne Chester J.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.496-504
    • /
    • 2005
  • The thermal and mechanical properties of an electro-slag cast steel of a similar chemical composition with an AISI-6F2 steel are investigated and compared with a forged AISI-6F2 steel. AISI-6F2 is a hot-working tool steel. Electro-slag casting (ESC) is a method of producing ingots in a water-cooled metal mold by the heat generated in an electrically conductive slag when current passes through a consumable electrode. The ESC method provides the possibility of producing material for the high quality hot-working tools and ingots directly into a desirable shape. In the present study, the thermal and mechanical properties of yield strength, tensile strength, hardness, impact toughness, wear resistance, thermal fatigue resistance, and thermal shock resistance for electro-slag cast and forged steel are experimentally measured for both annealed and quenched and tempered heat treatment conditions. It has been found that the electro-slag cast steel has comparable thermal and mechanical properties to the forged steel.

Hydrogen Behavior in the Steelmaking Process (제강공정에서 수소의 거동)

  • Shim, Sang-chul;Cho, Jung-wook;Hwang, Sang-taek;Kim, Kwang-chun
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.662-671
    • /
    • 2008
  • The behavior of hydrogen in the steel making process was investigated. The relation between the composition of ladle slag and hydrogen concentration in molten steel was considered. The hydrogen distribution ratio between ladle slag and molten steel was increased with increasing basicity of the slag; it was about 20 when the basicity of slag was 15. Hydroxyl capacity measured from the hydrogen distribution ratio between slag and the molten steel was comparatively corresponding to the value of hydroxyl capacity measured by the equilibrium reaction of slag and $H_2O$ gas. However, it is considerably different from the value calculated by regular solution model. The influence of hydrogen on a sticking type breakout is considered. The effect of hydrogen and $H_2O$ gas on the crystallization behavior of mold powder was investigated by DHTT (Dual hot thermocouple technique). As a result, it was proved that mold powder could be crystallized by $H_2O$ gas in the atmosphere. Therefore, it is concluded that $H_2O$ gas in the atmosphere can be a possible cause of the sticking type breakout that occasionally occurs in the continuous casting process.

A Study on the Properties of Converter Slag Modified by Addition of Waste Foundry Sand (폐주물사를 첨가한 전로슬랙의 개질특성에 관한 연구)

  • 김영환;김종학;고인용
    • Resources Recycling
    • /
    • v.8 no.1
    • /
    • pp.44-51
    • /
    • 1999
  • Converter slag was reduced and modified by the simultaneous addition of carbon and waste foundry sand as a $SiO_2$ source. The basic properties such as phase distribution, composition, specific density, hardness. absorption of water and compressive strength of modified slags were measured. The Iron recovery was significantly affected by the basicity of slag. The properties of slow cooled-modified slags of basicity 1.34 arc very similar to the natural aggregates.

  • PDF

Mineral Composition and Color Properties of Molten Clinker made from Blast Furnace Slag (고로(高爐)슬래그로 부터 제조(製造)된 용융(溶融)클링커의 광물조성(鑛物組成)과 색도특성(色度特性))

  • Chu, Yong-Sik;Seo, Sung-Kwan;Im, Du-Hyuk;Song, Hun;Lee, Jong-Kyu;Lee, Seung-Ho
    • Resources Recycling
    • /
    • v.20 no.6
    • /
    • pp.71-77
    • /
    • 2011
  • Raw mix of molten clinker was fabricated using blast furnace slag as starting material. Raw mix was melted at 1620 for molten clinker fabrication. Color and mineral composition of molten clinker was investigated by XRD and colorimeter. It was found that the molten clinker contains alite and belite equivalent to OPC clinker mineral and shows higher whiteness value than that of OPC. Whiteness of the molten clinker decreased with LSF and SM. Also the whiteness value of the slag cement using molten clinker was higher than that of common slag cement.

Improvement of Early Strength of Blast-Furnace Slag Blended Cement at Low Temperature (고로 슬래그 시멘트의 저온 조기 강도 증진)

  • 장복기;임용무;김윤주
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.130-135
    • /
    • 1999
  • The enhanced slag fineness and the batch water of low water-to-cement ratio(W/C) were employed in order to improve the early strength of blast-furnace slag blended cement at low temperature. A grinding aid was used to grind the blast-furnace slag into the fineness of 6,280$\textrm{cm}^2$/g (Blaine), and this fine slag was then homogeneously mixed with the ordinary Portland cement to produce the blast-furnace slag blended cement containing 40% slag by weight composition. On the other hand, the batch water could be reduced from W/C=0.50 (KS L 5105) to W/C=0.33 through a commercial, naphthalene type superplasticizer. Through the method mentioned above, the early strength of the blast-furnace slag blended cement at low temperature could be enhanced even somewhat higher than the Portland cement strength. And the microsturcture of the cement was studied by both the pore structure analysis and the A.C. impedance measurement.

  • PDF

A Study on the Replacement of a Light Burnt Dolomite with a Waste MgO-C Refractory Material for a Steel-Making Flux in Electric Arc Furnace (폐 MgO-C계 내화재의 전기로(EAF) 제강 Flux용 경소돌로마이트 대체 사용 연구)

  • Hyun-Jong Kim;Jong-Deok Lim;Hang-Goo Kim;Jei-Pil Wang
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.44-51
    • /
    • 2022
  • In the steelmaking process using an electric arc furnace (EAF), light-burnt dolomite, which is a flux containing MgO, is used to protect refractory materials and improve desulfurization ability. Furthermore, a recarburizing agent is added to reduce energy consumption via slag foaming and to induce the deoxidation effect. Herein, a waste MgO-C based refractory material was used to achieve the aforementioned effects economically. The waste MgO-C refractory materials contain a significant amount of MgO and graphite components; however, most of these materials are currently discarded instead of being recycled. The mass recycling of waste MgO-C refractory materials would be achievable if their applicability as a flux for steelmaking is proven. Therefore, experiments were performed using a target composition range similar to the commercial EAF slag composition. A pre-melted base slag was prepared by mixing SiO2, Al2O3, and FeO in an alumina crucible and heating at 1450℃ for 1 h or more. Subsequently, a mixed flux #2 (a mixture of light-burnt dolomite, waste MgO-C based refractory material, and limestone) was added to the prepared pre-melted base slag and a melting reaction test was performed. Injecting the pre-melted base slag with the flux facilitates the formation of the target EAF slag. These results were compared with that of mixed flux #1 (a mixture of light-burnt dolomite and limestone), which is a conventional steelmaking flux, and the possibility of replacement was evaluated. To obtain a reliable evaluation, characterization techniques like X-ray diffraction (XRD) analysis and X-ray fluorescence (XRF) spectrometry were used, and slag foam height, slag basicity, and Fe recovery were calculated.

The Study on Foam Formation in Waterslag-Bentonite System (수광재와 백토조합물에서의 기포형성에 관한 연구)

  • 김종희;송한식
    • Journal of the Korean Ceramic Society
    • /
    • v.14 no.4
    • /
    • pp.248-255
    • /
    • 1977
  • The effect of firing temperature, soaking time and batch composition upon the glass phase and pore formation as well as their distribution in slag foamed glass was investigated. Sulfur dioxide gas produced by the oxidation and reduction of metal sulfide in waterslag was attributed to foam forming agent. Slag foamed glass matrix was mainly composed of 35~60% glas phase and melilite crystalline phase. The increment of bentonite addition in batch lowered the foam forming temperature in studied system. The result showed also that the foam size distribution was broadened as th firing temperature wa inbereased.

  • PDF

Diverse Application of ECC Designed with Ground Granulated Blast Furnace Slag

  • Kim, Jeong-Su;Kim, Yun-Yong;Kim, Jin-Keun
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.11-18
    • /
    • 2007
  • In the recent design of high ductile engineered cementitious composites (ECC), optimizing both processing and mechanical properties for specific applications is critical. This study employs a method to develop useful ECC produced with slag particles (slag-ECC) in the field, which possesses different fluid properties to facilitate diverse types of processing (i.e., self-consolidating or spray processing). Control of rheological modulation was regarded as a key factor to allow the performance of the desired processing while retaining the ductile material properties. To control the rheological properties of the composite, the basic slag-ECC composition was initially obtained, determined based on micromechanics and steady-state cracking theory. The stability and consequent viscosity of the suspensions were then mediated by optimizing the dosage of the chemical and mineral admixtures. The rheological properties altered through this approach were revealed to be effective in obtaining ECC-hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension, allowing the readily achievement of the desired function of the fresh ECC.

Flowing and Setting Properties of High Flowing$\cdot$High Strength Concrete using Blast-Furnace Slag according to the Chemical Agent (고로슬래그 미분말을 사용한 고유동고$\cdot$강도 콘크리트의 혼화제에 따른 유동 및 응결 특성)

  • Kim, Yong-Ro;Shim, Jae-Hyung;Kang, Suk-Pyo;Kim, Sang-Yun;Baik, Chul;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1242-1247
    • /
    • 2000
  • Results from a study on the effect of the chemical agent on the flowing and setting properties of high flowing.high strength concrete using blast-furnace slag are presented in this paper. The flowing and setting properties of concrete are investigated by slump, slump-flow, flowing velocity, L-flow, velocity of V-funnel, L-spatial passability and setting time. In addition, kinds of chemical agent were composed of naphthalene type, of naphthalene and melamine and melamine type. The results indicate that dispersive capacity can be increased by naphthalene composition. Also, it shows that viscosity and early strength can be increased by melamine composition.

  • PDF