• Title/Summary/Keyword: Slag Blended Cement

Search Result 126, Processing Time 0.027 seconds

An Experimental Study for Improving the Early Strength of Ternary Blended Cement Mortar (삼성분계 혼합시멘트 모르타르의 조기강도 향상을 위한 실험적 연구)

  • Bae, Jun-Young;Jang, Young-Il
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.110-116
    • /
    • 2012
  • Recently, the development and field applications of Ternary Blended Cement(TBC), where blast furnace slag and fly ash are recycled in Ordinary Portland Cement(OPC) in order to obtain improvements in the durability and heat of hydration reduction performance in large scale civil structures, have been increasing. Also, there are continuing efforts by construction companies to reduce the construction time with the aim of reducing construction costs. Therefore, there is a need to improve the performance of TBC, which has a relatively slow early strength development. In order to improve the early strength of TBC mortar, the compressive strength, SO3 content, and SEM analysis was determined in this study on mortar with the fineness and content of blast furnace slag and anhydrite regulated. As a result, to secure the early strength of TBC mortar, using blast furnace slag with a fineness of approximately $4,200cm^2/g$, adding 3.5% anhydrite with a fineness of approximately $10,000cm^2/g$, and managing the $SO_3$ content to roughly 3.72% was found to provide the most outstanding early strength properties.

Fundamental study on the strength and durability of ternary blended cement concrete (3성분계 시멘트콘크리트의 강도 및 내구특성에 대한 기초적 연구)

  • Lee, Seung-Tae;Lee, Seung-Heun;Kim, Dae-Seong;Kim, Do-Gyun;Seo, Chang-Won;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.343-344
    • /
    • 2009
  • Compressive strength and chloride ions permeability measurements of ternary blended cement concretes incorporating ground granulated blast-furnace slag and fly ash were performed From a result of this study, it was found that there may be not a linear relationship between compressive strength and durability of ternary blended cement concretes.

  • PDF

Rheological Properties of Ordinary Portland Cement - Blast Furnace Slag - Fly Ash Blends Containing Ground Fly Ash (분쇄된 플라이애시를 혼합한 3성분계 시멘트의 유동특성)

  • Park, Hyo-Sang;Yoo, Dong-Woo;Byun, Seung-Ho;Song, Jong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.58-68
    • /
    • 2009
  • In this study, rheological properties of ternary system cement containing ground fly ash(F3, Blaine specific surface area $8,100\;cm^2/g$) were investigated using mini slump, coaxial cylinder viscometer and conduction calorimeter. In the results, the segregation resistance was observed at high W/B and PC area while the replacement ratio of F3 was increasing. The 2:5:3 system was shown in higher fluidity and lower hydration heat than 3:4:3 system. The segregation range of cement pastes occurred over 175 mm in average diameter by mini slump and below $10\;dynesec/cm^2$ of the plastic viscosity or below 50 cP of the yield stress by coaxial cylinder viscometer. It was observed that even if BFS and FA blended together admixture properties would remaine as they were separately. The properties of admixture would not be changed. On the above results, the decreased replacement ratio of OPC and increased replacement ratio of admixtures would be possible.

Rheological Properties of Cement Paste Containing Ultrafine Blastfurnace Slag (초미분말 고로슬래그를 혼합한 시멘트 페이스트의 유동특성)

  • You, Chang-Dal;Byun, Seung-Ho;Song, Jong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.8
    • /
    • pp.430-436
    • /
    • 2007
  • Rheological properties of cement paste containing ultrafine blastfurnace slag (UBS, $9600cm^2/g$) were investigated by mini-slump test, pH meter, conduction calorimeter and coaxial cylinder viscometer. In order to improve rheological properties of the cement paste, granulated blastfurnace slag (GBS, $3500cm^2/g$) and polycarboxylate type superplasticizer (PC) were also used in this experiment. The fluidity of cement paste containing UBS was decreased. The yield stress and plastic viscosity of cement paste was increased with increasing UBS. But the rheological properties were improved when GBS and PC were added to UBS blended cement paste. In the relationship between the yield stress and the plastic viscosity or the mini-slump value, the yield stress of the cement paste was proportional to the plastic viscosity of it. However the cement paste mini-slump value was in inverse proportional to the yield stress.

Studies on the High Strength Cement Hardened Body Blended by Industrial By-Products (산업 폐부산물을 혼합재로한 고강도 시멘트 경화체의 제조 및 특성분석)

  • 연영훈;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1507-1512
    • /
    • 1994
  • High strength cement hardened body was prepared by ordinary portland cement, silica-fume, super-plasticizer and the industrial by-product powder such as tailing, paper sludge ash and granulated slag. These raw materials were mixed and formed with w/c=0.18. The cement hardened body is cured in the autoclave at 18$0^{\circ}C$, 10atm. These admixtures made the compressive strength of all specimens develope by 170~230%. The highest compressive strength could be obtained by 236 MPa when mix composition was 14 wt% of silica-fume and 26 wt% of granulated slag. The compressive strength increased with decreasing the average pore size and the amount of the poe over the size of 50 nm by which the appearance of high compressive strength of the cement hardened body were mainly influenced. In the result, the hydration products were C-S-H, tobermorite and ettringite and it was realized that the reason why the cement hardened body became dense and revealed the higher strength was that those hydrates were formed inside of the pore and filled in it and the unhydrated materials played the role of an inner-filler.

  • PDF

The Feasibility Study for Utilization of Blended Cement as a Activator of Bottom Ash from Circulating Fluidized Bed Combuster Boiler (순환유동층 보일러 바텀애시의 혼합시멘트 자극제 활용을 위한 타당성 연구)

  • Park, JongTak;Jung, Gwon Soo;Kang, Chang Ho;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.255-262
    • /
    • 2020
  • Blended cement with fly ash and bottom ash from Circulating Fluidized Bed Combustor boiler(CFBC) burned at a low temperature, can be high heat of hydration and abnormal setting caused by higher volumn contents of Fe2O3, free-CaO, SO3. In this study, the ground CFBC bottom ash powder mixed with blast furnace slag was used as substitute activator of gypsum and recycled iron slag was produced from mix and pulverized by ball mill to increase the recycling rate. The effect on compressive strength of cements with the mixture of original and hydrated bottom ash mixtures with BFS with small water, respectively, was analyzed, and it was found that the hydrated bottom ash activator was more effective in initial strength development. To improve the initial strength of blended cement, an activator mixed with a blast furnace slag and bottom ash mixing ratio of 5:95 and 10:90, respectively, the slag cement by about 6%, and it was analyzed to develop an initial strength similar to gypsum as a conventional activator.

Rheological Properties of Cement Paste Blended Blast Furnace Slag or Fly Ash Powder (고로슬래그 및 플라이 애시 분말을 혼합한 시멘트 페이스트의 유동특성)

  • Song, Jong-Taek;Park, Hyo-Sang;Byun, Seung-Ho;Yoo, Dong-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.6
    • /
    • pp.336-344
    • /
    • 2008
  • Rheological properties of cement pastes containing blast furnace slag (BFS: 3,900, $7,910\;cm^2/g$) or fly ash powder (FA: 4,120, $8,100\;cm^2/g$) according to the ratio of water/binder (W/B) and the dosage of polycarboxylate type superplasticizer (PC) were investigated by a mini slump and a coaxial cylinder viscometer. In this experiment, the ratio of replacing OPC with BFS or FA was 30 wt%, the W/B was from 30 to 70 wt%. As a result, the fluidity of cement paste containing BFS or FA was improved with increasing W/B and the dosage of PC. BFS or FA replaced cement paste with W/B 70% and PC 0.3% showed the highest fluidity. The segregation range of cement paste was occurred below $10\;d/cm^2$ of the yield stress and below 50 cPs of the plastic viscosity by the coaxial cylinder viscometer. And also it was formed that the plastic viscosity and the yield stress of FA replaced cement paste were higher than them of BFS replaced cement paste.

Prediction of Rheological Properties of Cement-Based Pastes Considering the Particle Properties of Binders (결합재의 입자특성을 고려한 시멘트 기반 2성분계 페이스트의 유변특성 예측)

  • Eun-Seok Choi;Jun-Woo Lee;Su-Tae Kang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.111-119
    • /
    • 2023
  • Recently, a variety of new cement-based materials have been developed, and attempts to predict the properties of these new materials are increasing. In this study, we aimed to predict the rheological properties of binary blended pastes. The cementitious materials used in the study included Portland cement (PC), fly ash (FA), blast furnace slag (BS), and silica fume (SF). The three binder components, fly ash, blast furnace slag, and silica fume, were blended with cement as the foundational composition. We predicted the yield stress and plastic viscosity of the pastes using the YODEL (Yield stress mODEL) and Krieger-Dougherty's equation. The predictive model's performance was validated by comparing it with experimental results obtained using a rheometer. When the rheological properties of the binary blended paste were predicted by reconstructing the properties and parameters used to predict the individual materials, it was evident that the predictions made using the proposed method closely matched the experimental results.

Durability Characteristics of Ternary Cement Matrix Using Ferronickel Slag According to the Alkali-Activators (알칼리 활성화제 종류별 페로니켈슬래그를 사용한 3성분계 시멘트 경화체의 내구특성)

  • Cho, Won-Jung;Park, Eon-Sang;Jung, Ho-Seop;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.190-197
    • /
    • 2020
  • This paper evaluates the mechanical properties and durability of cement matrix blended with mineral admixtures and ferronickel slag(FNS) powder which is an industrial b y-product during ferronickel smelting process. The hydration heat, pore structure, compressive strength, length change, rapid chloride penetration test(RCPT), and freezing and thawing resistance of ternary blended cement matrix were investigated and compared with ordinary portland cement matrix. The result showed that the compressive strength of ternary blended cement matrix using ferronickel slag powder and mineral mixture was low in strength compared to the reference concrete, but recovered to a certain extent by using alkali activator. Length change of cement mortar using FNS powder have shown less shrinkage occurs than the reference specimen. In addition, irrespective of using the alkali-activators, all ternary mix are indicative of the 'very low' range for chloride ion penetrability according to the ASTM C 1202, and the freeze-thaw resistance also showed excellent results.

Study on Utilization of Converter Slag as Concrete Admixture

  • Satou, Masaki;Tsuyuki, Naomitsu;Umemura, Yasuhiro;Harada, Hiroshi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.514-519
    • /
    • 2001
  • Converter has been slag produced 10 million tons per year in Japan. It is a steel making by product produced in the same way as the blast-furnace slag. Though blast-furnace slag is being used effectively as a concrete admixture, the converter stag has never been used effectively because of the expansion action of contained free lime and iron oxide. This is an important environmental problem in the steel industry. Beta-2CaOSiO$_2$(beta-C$_2$S) is contained 40 percent in converter slag, therefore it is very promising as a concrete admixture. We proposed an accelerated aging processes capable of stabilizing the converter slag in a short time. The converter slag is dipped into alkali aqueous solution after heating at low temperature. It was subsequently ground to a grain size of 75 ${\mu}{\textrm}{m}$ , inner 30 percent of OPC. The properties of mortar and concrete using the blended cement were determined. As a result, it has become apparent that the expansion was reduced and long term compressive strength was increased while that at early ages was not so remarkable. The hydration exotherm rate was lower than that of the OPC.

  • PDF