• Title/Summary/Keyword: Slab in the Steel Structure

Search Result 130, Processing Time 0.032 seconds

An Experimental Study on the Structure Behavior of Deck Slabs in PSC Box Girder Bridges (프리스트레스트 콘크리트 박스거더 교량 바닥판의 구조거동에 관한 실험 연구)

  • 오병환;이성철;박성용;김성태;박성룡;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.319-322
    • /
    • 2002
  • In this paper, an experimental study is carried out to find out structural behavior of upper slab in concrete box girder bridges. The major variables in the tests are the cross-section of upper slab including haunch dimensions. The strains of concrete and steel bars and the deflections of slabs are measured automatically during the tests. The test results indicate that the size of haunches has much influence on the structural behavior of box girders. The appropriate haunch dimensions are suggested from the present study.

  • PDF

Evaluation of minimum depth of soil cover and reinforcement of soil cover above soil-steel bridge (지중강판 구조물의 최소토피고 평가 및 상부토피 보강 방안)

  • Jung, Hyun-Sik;Lee, Jong-Ku;Cho, Sung-Min;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.425-432
    • /
    • 2004
  • In this paper, the results of the numerical analysis for the minimum depth of soil cover have been compared with those of currently suggested codes. Based on this comparison, the minimum depth of soil cover for the structures with long spans was suggested. Results showed that the actual depth of the soil cover required against soil failure over a circular and low-profile arch structure does not vary significantly with the size of the span and for the circular structure, the minimum depth of the soil cover was about 1.5m, and for the low-profile arch structures, below about 1.6m. And the previously established code in which the minimum depth of soil cover is defined to linearly increase with the increase in the span (CHBDC, 2001) was very conservative. For the structure with the relieving slab, the maximum live load thrust was reduced by about 36 percent and the maximum moment about 81 percent. The numerical analysis gave more conservative estimation of the live-load thrusts than the other design methods.

  • PDF

A Study on the Sound Insulation for Void-deck Slab Combined with Deck Plate and Polystyrene Void Foam (데크플레이트와 경량성형재가 결합된 슬래브의 차음성능에 대한 실물실험 평가)

  • Roh, Young-Sook;Yoon, Seong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.60-65
    • /
    • 2015
  • This study is to explore floor impact sound and sound insulation of reinforced concrete structure with void-deck slab system which combines polystyrene void foam and T-shaped steel deck plate. A void-deck slab system can effectively reduce the amount of concrete used and hence the mass of a reinforced concrete slab. Also void slab system has dynamically favorable for bending. Three-bay 2-story building was constructed as a mock up test specimen using void-deck slab system and floor impact sound was measured to valuate sound insulation performance. Light weight floor impact and heavy weight floor impact were investigated. Light weight floor impact pressure levels were 32dB, 28dB, and 29db at representative locations which are $1^{st}$ level in the floor impact sound insulation performance grading system. The heavy-weight floor impact pressure levels were 44dB, 45dB, and 43dB at representative locations which are $2^{nd}$ level in the floor impact sound insulation performance grading system. Therefore void-deck slab system can be used in public housing apartment building in terms of not only effectively reduced construction materials but also floor impact sound insulation.

Dynamic analysis by impact load in viscoelastic sandwich plates with FRP layer utilizing numerical method

  • Bayati, Mohammad Reza;Mazaheri, Hamid;Bidgoli, Mahmood Rabani
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.229-240
    • /
    • 2022
  • The main objective of this work is presenting a mathematical model for the concrete slab with fiber reinforced polymer (FRP) layer under the impact load. Impacts are assumed to occur normally over the top slab and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the sinusoidal shear deformation theory (SSDT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure is calculated numerically so that the effects of mass, velocity and height of impactor, boundary conditions, FRP layer, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force of system. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the impact velocity of impactor yields to increases in the maximum contact force and deflection while the contact duration is decreased. The result shows that the contact force and the central deflection of the structure decreases and the contact time decreases with assuming FRP layer.

A simplified approach for fire-resistance design of steel-concrete composite beams

  • Li, Guo-Qiang;Wang, Wei-Yong
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.295-312
    • /
    • 2013
  • In this paper, a simplified approach based on critical temperature for fire resistance design of steel-concrete composite beams is proposed. The method for determining the critical temperature and fire protection of the composite beams is developed on the basis of load-bearing limit state method employed in current Chinese Technical Code for Fire safety of Steel Structure in Buildings. Parameters affecting the critical temperature of the composite beams are analysed. The results show that at a definite load level, section shape of steel beams, material properties, effective width of concrete slab and concrete property model have little influence on the critical temperature of composite beams. However, the fire duration and depth of concrete slab have significant influence on the critical temperature. The critical temperatures for commonly used composite beams, at various depth of concrete and fire duration, are given to provide a reference for engineers. The validity of the practical approach for predicting the critical temperature of the composite beams is conducted by comparing the prediction of a composite beam with the results from some fire design codes and full scale fire resistance tests on the composite beam.

Study on the Application of Tuned Pendulum Slab Damper system (TPSD) to Building structure (진자슬래브에 의한 진동제어시스템의 적용성 평가)

  • Kim, Yang-Jung;Seo, Gun-Bae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.181-184
    • /
    • 2012
  • The Tuned Pendulum Slab Damper(TPSD)system is mainly composed of suspended pendulum slab which was hanging with cable wire from the top floor of building without any extra loads structurally, and can be helpful to reduce vibration with effect of tuned mass damper function by the principle of pendulum movement. The experiment was performed with miniatures of the 30stories of steel structure building by the forced vibration test using shaking table, and the result was reduced about 42% of vibration. The purpose of this study was to make analysis of application of the TPSD system to new building and exist building against strong wind or seismic wave. The result of this study was that the TPSD system shall be satisfactory in field of execution, process control, safety and economical efficiency with saving up to 70% of construction cost.

  • PDF

Fracture Analysis of High Carbon Steel Slabs in a Furnace (가열로 내부에서 발생하는 고탄소강 주편의 판파단 원인 분석)

  • Kim, Y.J.;Jang, M.J.;Asghari-Rad, Peyman;Jung, Y.J.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.3
    • /
    • pp.151-156
    • /
    • 2020
  • In general, the cause of slab cracking during heat treatment has been analyzed with focus on processing conditions. However, in the present work, the cause of cracking is analyzed based on the microstructural evolution during heat treatment. The microstructural analysis indicates that the structure of the slab consists of three main regions as the top, quarter, and center parts. The tensile properties are investigated in each region of the slab in the temperature range from 25 to 350 ℃. Results demonstrate that the cracking is mainly attributed to the thermal stress and specific morphology of the microstructure. It is proposed that the cracking during the heat treatment is related to the presence of inclusion at the ferrite phase which is located at the boundary of pearlite grains.

Slab panel vertical support and tensile membrane action in fire

  • Abu, Anthony K.;Burgess, Ian W.;Plank, Roger J.
    • Steel and Composite Structures
    • /
    • v.8 no.3
    • /
    • pp.217-230
    • /
    • 2008
  • The increasing use of performance-based approaches in structural fire engineering design of multi-storey composite buildings has prompted the development of various tools to help quantify the influence of tensile membrane action in composite slabs at elevated temperatures. One simplified method which has emerged is the Bailey-BRE membrane action method. This method predicts slab capacities in fire by analysing rectangular slab panels supported on edges which resist vertical deflection. The task of providing the necessary vertical support, in practice, requires protecting a panel's perimeter beams to achieve temperatures of no more than $620^{\circ}C$ at the required fire resistance time. Hence, the integrity of this support becomes critical as the slab and the attached beams deflect, and large deflections of the perimeter beams may lead to a catastrophic failure of the structure. This paper presents a finite element investigation into the effects of vertical support along slab panel boundaries on the slab behaviour in fire. It examines the development of the membrane mechanism for various degrees of edge-beam protection, and makes comparisons with predictions of the membrane action design method and various acceptance criteria.

Damage assessment of shear connectors with vibration measurements and power spectral density transmissibility

  • Li, Jun;Hao, Hong;Xia, Yong;Zhu, Hong-Ping
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.257-289
    • /
    • 2015
  • Shear connectors are generally used to link the slab and girders together in slab-on-girder bridge structures. Damage of shear connectors in such structures will result in shear slippage between the slab and girders, which significantly reduces the load-carrying capacity of the bridge. Because shear connectors are buried inside the structure, routine visual inspection is not able to detect conditions of shear connectors. A few methods have been proposed in the literature to detect the condition of shear connectors based on vibration measurements. This paper proposes a different dynamic condition assessment approach to identify the damage of shear connectors in slab-on-girder bridge structures based on power spectral density transmissibility (PSDT). PSDT formulates the relationship between the auto-spectral densities of two responses in the frequency domain. It can be used to identify shear connector conditions with or without reference data of the undamaged structure (or the baseline). Measured impact force and acceleration responses from hammer tests are analyzed to obtain the frequency response functions at sensor locations by experimental modal analysis. PSDT from the slab response to the girder response is derived with the obtained frequency response functions. PSDT vectors in the undamaged and damaged states can be compared to identify the damage of shear connectors. When the baseline is not available, as in most practical cases, PSDT vectors from the measured response at a reference sensor to those of the slab and girder in the damaged state can be used to detect the damage of shear connectors. Numerical and experimental studies on a concrete slab supported by two steel girders are conducted to investigate the accuracy and efficiency of the proposed approach. Identification results demonstrate that damages of shear connectors are identified accurately and efficiently with and without the baseline. The proposed method is also used to evaluate the conditions of shear connectors in a real composite bridge with in-field testing data.

Seismic performance of prefabricated reinforced concrete column-steel beam sub-assemblages

  • Bai, Juju;Li, Shengcai
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.203-218
    • /
    • 2022
  • In this paper, quasi-static tests were carried out on three prefabricated reinforced concrete column-steel beam (RCS) sub-assemblages with floor slabs and one comparison specimen without floor slab. The effects of axial compression and floor slab on the seismic performance were studied, and finite element simulations were conducted using ABAQUS. The results showed that the failure of prefabricated RCS sub-assemblages with floor occurred as a joint beam and column failure mode, while failure of sub-assemblages without floor occurred due to beam plastic hinge formation. Compared to the prefabricated RCS sub-assemblages without floor slab, the overall stiffness of the sub-assemblages with floor slab was between 19.2% and 45.4% higher, and the maximum load bearing capacity increased by 26.8%. However, the equivalent viscosity coefficient was essentially unchanged. When the axial compression ratio increased from 0.24 to 0.36, the hysteretic loops of the sub-assemblages with floor became fuller, and the load bearing capacity, ductility, and energy dissipation capacity increased by 12.1%, 12.9% and 8.9%, respectively. Also, the initial stiffness increased by 10.2%, but the stiffness degradation accelerated. The proportion of column drift caused by beam end plastic bending and column end bending changed from 35% and 46% to 47% and 36%, respectively. Comparative finite element analyses indicated that the numerical simulation outcomes agreed well with the experimental results.