• Title/Summary/Keyword: Slab Design

Search Result 856, Processing Time 0.024 seconds

Contribution of non-structural brick walls distributions on structures seismic responses

  • Farghaly, Ahmed Abdelraheem;Rahim, Hamdy H.A. Abdel
    • Earthquakes and Structures
    • /
    • v.5 no.5
    • /
    • pp.553-570
    • /
    • 2013
  • Using of masonry infill as partitions, in flat slab frame buildings is a common practice in many parts of the world. The infill is, generally, not considered in the design and the buildings are designed as bare frames. More of fundamental information in the effect of masomary infill on the seismic performance of RC building frames is in great demand for structural engineers. Therefore the main aim of this research is to evaluate the seismic performance of such buildings without (bare frame) and with various systems of the masonary infill. For this purpose, thirteen three dimensional models are chosen and analyzed by SAP2000 program. In this study the stress strain relation model proposed by Crisafulli for the hysteric behaviour of masonary subjected to cyclic loading is used. The results show that the nonstructural masonary infill can impart significant increase global strength and stiffness of such building frames and can enhance the seismic behaviour of flat slab frame building to large extent depending on infill wall system. As a result great deal of insight has been obtained on seismic response of such flat slab buildings which enable the structural engineer to determine the optimum position of infill wall between the columns.

Modelling of bonded and unbonded post-tensioned concrete flat slabs under flexural and thermal loading

  • Mohammed, Abbas H.;Taysi, Nildem
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.595-606
    • /
    • 2017
  • During their life span, post-tensioned concrete structures may be exposed to thermal loads. Therefore, there has been a growing interest in research on the advanced analysis and design of post-tensioned concrete slabs subjected to thermal loads. This paper investigates the structural behaviour of post-tensioned one-way spanning concrete slabs. A nonlinear finite element model for the analysis of post- tensioned unbonded and bonded concrete slabs at elevated temperatures was developed. The interface between the tendon and surrounding concrete was also modelled, allowing the tendon to retain its profile shape during the deformation of the slab. The load-deflection behaviour, load-force behaviour in the tendon, and the failure modes are presented. The numerical analysis was conducted by the finite element ANSYS software and was carried out on two different one-way concrete slabs chosen from literature. A parametric study was conducted to investigate the effect of several selected parameters on the overall behavior of post-tensioned one-way concrete slab. These parameters include the effect of tendon bonding, the effect of thermal loading and the effect of tendon profile. Comparison between uniform thermal loading and nonuniform thermal loading showed that restrained post tensioned slab with bottom surface hotter has smaller failure load capacity.

Review of stud shear resistance prediction in steel-concrete composite beams

  • Bonilla, Jorge;Bezerra, Luciano M.;Mirambell, Enrique;Massicotte, Bruno
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.355-370
    • /
    • 2018
  • In steel-concrete composite beams, longitudinal shear forces are transferred across steel flange-concrete slab interface by means of shear connectors. The connector behavior is highly non-linear and involves several complex mechanisms. The design resistance and stiffness of composite beams depends on the shear connection behavior and the accuracy in the connector resistance prediction is essential. However determining the stud shear resistance is not an easy process: analytical methods do not give an adequate response to this problem and it is therefore necessary to use experimental methods. This paper present a summary of the main procedures to predict the resistance of the stud shear connectors embedded in solid slab, and stud shear connectors in composite slab using profiled steel sheeting with rib perpendicular to steel beam. A large number of experimental studies on the behavior of stud shear connectors and reported in the literature are also summarized. A comparison of the stud shear resistance prediction using six reference codes (AISC, AASHTO, Eurocode-4, GB50017, JSCE and AS2327.1) and other procedures reported in the literature against experimental results is presented. From this exercise, it is concluded that there are still inaccuracies in the prediction of stud shear resistance in all analysed procedures and that improvements are needed.

An Experimental Study on the Structural Bechavior of Two-layered Reinforced Concrete Slabs in Bridges (교량에서 2층 분리타설한 철근콘크리트 슬래브의 구조거동에 관한 실험연구)

  • 오병환;이형준;이명규;한승환
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.162-172
    • /
    • 1994
  • The flexural and horizontal shear behavior of overlaid concrete slabs with polymer interface is investigated in the present study. An experimental program was set up and several series of overlaid concrete slabs have been tested to study the effect of different surface preparations and dowel bars between old slab and overlay under service and ultimate loads. 'The cracking and ulti mate load behavior for various cases including acryl emulsion treatment and doweled joints has been studied. The present study indica.tes that the overlaid concrete slabs behave integrally with existing bottom slabs up to ultimate range for rough and doweled joints with polymer interface. The pres ent study provides a firm base for the realistic design of two-layered RC slabs in bridges.

Finite element investigation of the joints in precast concrete pavement

  • Sadeghi, Vahid;Hesami, Saeid
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.547-557
    • /
    • 2018
  • This paper measures the mechanical response of precast pavement joints under moving axle loads using the finite-element method, and the models were validated with results of field tests. In order to increase the ability to use the non-linear FE analysis for design and assessment of precast pavement subjected to moving axle load, this paper investigated the effects of different load transfer between the slabs using the ABAQUS finite-element package to solve the nonlinear explicit model equations. The assembly of the panels using dowels and groove-tongue keys has been studied to assess the efficiency of keyway joint system. Concrete damage plasticity model was used to calculate the effects of permanent damages related to the failure mechanisms. With aggregate interlock as the only load transferring system, Load transfer efficiency (LTE) is not acceptable when the axle load reaches to slab joints. The Finite-element modelling (FEM) results showed that keyway joints significantly reduced tensile stresses developed at the mid-slab. Increasing the thickness of the tongue the LTE was improved but with increasing the height of the tongue the LTE was decreased. Stresses are transferred to the adjacent slab efficiently when dowels are embedded within the model. When the axle load approaches joints, tensile damage occurs sooner than compressive damage, but the damage rate remains constant, then compressive damage increases significantly and become the major form of distress under the dowels.

A Study on the Control of the Floor Vibration in a Research Building (연구소(硏究所) 건물(建物)의 슬래브 진동(振動) 성능개선(性能改善) 연구(硏究))

  • Baik, In-Whee;Kang, Ho-Sub;Sohn, Young-Kyoo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.3
    • /
    • pp.75-82
    • /
    • 2007
  • A vibration in the building occurs by influences of the facility equipment and the structural system. As the building recently becomes higher and bigger, the vibration in the floor slab is issued. Specially, the vibration with $4{\sim}8Hz$ frequency is harder to control than any other range of frequency. This vibration easily affects human sensibility and often makes the resonance phenomenon by corresponding with the floor slab's natural frequency when people and heavy equipments move. Moreover, the permission regulations for the vibration of the building are established by building's purposes. However, it is not subdivided in detail and sometimes ambiguous to each client. Even though the vibration could cause negative influences in a research building, there is not the vibration criterion for a research building. Therefore, it is necessary to set up its own vibration criterion with the client before building and to keep checking this vibration criterion under the construction. This study proposes the reasonable control methods and the vibration criterion for floor slab's vibration which are adapted to the R4-project. The R4-project is a research building and a high-rise building also. Accordingly, this study could help to the next similar project in the design and the construction phase.

Unified equivalent frame method for flat plate slab structures under combined gravity and lateral loads - Part 2: verification

  • Choi, Seung-Ho;Lee, Deuck Hang;Oh, Jae-Yuel;Kim, Kang Su;Lee, Jae-Yeon;Shin, Myoungsu
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.735-751
    • /
    • 2014
  • In the previous paper, authors proposed the unified equivalent frame method (UEFM) for the lateral behavior analysis of the flat plate structure subjected to the combined gravity and lateral loads, in which the rotations of torsional members were distributed to the equivalent column and the equivalent slab according to the relative ratio of gravity and lateral loads. In this paper, the lateral behavior of the multi-span flat plate structures under various levels of combined gravity and lateral loads were analyzed by the proposed UEFM, which were compared with test results as well as those estimated by existing models. In addition, to consider the stiffness degradation of the flat plate system after cracking, the stiffness reduction factors for torsional members were derived from the test results of the interior and exterior slab-column connection specimens, based on which the simplified nonlinear push-over analysis method for flat plate structures was proposed. The simplified nonlinear analysis method provided good agreements with test results and is considered to be very useful for the practical design of the flat plate structures under the combined gravity and lateral loads.

Analysis of Iron-filings Trapping Characteristics on Concrete Slab Track using Permanent Magnet (영구자석을 이용한 콘크리트 궤도상의 쇠가루 포집장치 특성 분석 연구)

  • Park, Chan-Bae;Lee, Ju
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.4
    • /
    • pp.348-353
    • /
    • 2011
  • Iron fillings which were accumulated around the rail was often the cause of abnormal signal in case of signaling equipment using rail as transmission line. Iron fillings were generated on curved section of railroad due to the friction between rail and wheel, and metro line company urged to find the way to remove these iron fillings, because these were often the cause of abnormal signal. Magnetic device for trapping iron fillings around concrete slab tracks is introduced. The characteristics of magnetic device were analyzed using basic design and numerical analysis method. Magnetic device for trapping iron fillings were examined for application to the train which were operating in commercial line.

Life-Cycle Cost Optimization of Slab Bridges with Lightweight Concrete (경량 콘크리트를 이용한 슬래브교의 생애주기비용 최적설계)

  • 정지승;조효남;최연왕;민대홍;이종순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.257-264
    • /
    • 2002
  • This study presents a life-cycle cost (LCC) effectiveness of a concrete with lightweight aggregate. A number of researchers have made their efforts to develop a lightweight concrete, since it is difficult to apply conventional concrete using general aggregate to heavy self-weight structures such as long span bridges. In this study, an optimum design for minimizing the life-cycle cost of concrete slab bridges is performed to evaluate the life cycle cost effectiveness of the lightweight concrete relative to conventional one from the standpoint of the value engineering. The data of physical properties for new concrete can be obtained from basic experimental researches. The material properties of conventional one are acquired by various reports. This study presents a LCC effectiveness of newly developed concrete, which is made by artificial lightweight aggregate. A number of researchers have made their efforts to develop a lightweight concrete, since it is difficult to apply conventional concrete using general aggregate to heavy self-weight structures such as long span bridges. From the results of the numerical investigation, it may be positively stated that the new concrete lead to, the longer span length, the more economical slab bridges compared with structures using general concrete.

  • PDF

Analytical Study on Fire Resistance Predictions of Prestressed Concrete Slabs (프리스트레스트 콘크리트 슬래브의 내화성능 예측에 대한 해석적 연구)

  • Min, Jeong-Ki;Park, Min Jae;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.69-75
    • /
    • 2017
  • In fire design for floors, the three criteria of stability, integrity and insulation are required for the specified fire resistance duration. Among these, stability is not easy to confirm. For solid prestressed concrete slabs of uniform thickness, Eurocode 2 provides tabulated data and specifies an axis distance to the centroid of strands to achieve particular fire resistance ratings, but it is not clear if this data can be used for a wide range of different prestressed slab profiles. In order to verify the current code-fire ratings for precast prestressed slabs, both simple and advanced calculation methods are investigated. This paper examines the use of calculation methods, accounting for the real behaviour of unprotected simply supported prestressed concrete slabs exposed to the standard ISO 834 fire. The calculated fire resistance of each prestressed concrete slab is compared with tabulated data in Eurocode part 1.2, with detailed discussion.