• Title/Summary/Keyword: Sky radiation

Search Result 114, Processing Time 0.028 seconds

Comprehension and Appropriate Use of a Flood Table on a Gamma Camera (감마 카메라의 Flood Table에 대한 이해와 적절한 이용)

  • Kim, Jae-Il;Im, Jeong-Jin;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.29-33
    • /
    • 2011
  • Background and Purpose: Uniformity is the one of the important quality control features with respect to gamma cameras. To maintain adequate uniformity, we must acquire suitable flood table (=flood map) data because the flood table effects energy, and the type or dose of input radiation. Therefore, in this study we evaluated the difference in uniformity when uniformity does not match between the type of input radiation and the flood table data or collimator type. Subjects and Methods: For input radiation, we prepared 370 MBq of $^{57}Co$, $^{99m}Tc$, and $^{201}Tl$. Using SKYLight (Philips) and Infinia gamma cameras (GE), we acquired nine uniformity data that were corrected by technetium, cobalt flood table and did not corrected image for the three sources. Additionally, we acquired two uniformity images with a collimator that were corrected by intrinsic and extrinsic flood tables. Using this data, we evaluated and compared the uniformity values. Results: In the case of the SKYLight gamma camera, the uniformities of the images that matched between the input radiation and flood table with respect to $^{99m}Tc$ and $^{57}Co$ were better than the unmatched uniformity (3.96% vs. 5.69% ; 4.9% vs. 5.91%). However, because there was no thallium flood table, the uniformities of images at Tl were significantly incorrect (7.49%, 7.03%). The uniformities of the Infinia gamma camera had the same pattern as the SKYLight gamma camera (3.7% vs. 4.5%). Moreover, the uniformity of the $^{99m}Tc$ image acquired with a collimator and corrected by an extrinsic flood table was better than the intrinsic flood table (3.96% vs. 6.28%). Conclusion: Correcting an image by a suitable flood table can help achieve better uniformity for a gamma camera. Therefore, we have to acquire images with suitable uniformity correction, and update the flood table periodically. Whenever we acquire a nuclear medicine image, we always have to check the appropriate flood table according to the acquired condition.

  • PDF

The Influence of the Landscaping Shade Membrane's Brightness on the Mean Radiant Temperature(MRT) of Summer Outdoor (조경용 차양막 재료의 명도가 하절기 옥외공간의 평균복사온도에 미치는 영향)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.5
    • /
    • pp.65-73
    • /
    • 2015
  • The purpose of this study was to compare the Mean Radiant Temperature(MRT) under two landscaping shade membranes, white and black, with those of natural outdoor spaces at summer midday. An additional perforated black shading net was applied and compared for the consideration of the practical application. The average MRT at the height of 2.4m, 10cm below the membranes of black, white, and perforated black were $49.1^{\circ}C$, $41.6^{\circ}C$ and $36.8^{\circ}C$ respectively, while that of open sky was $41.8^{\circ}C$. This indicates that a closer position to the darker membrane caused a higher MRT. At the height of 1.1m and 1.7m, the difference of MRT between the black and the white membranes was slight, while the value of white was unexpectedly higher than the black. The MRT of black perforated net showed the lowest value at every height. The black membrane absorbed more solar radiation than the white, which caused the greater release of long wave radiation and higher temperature near the membrane itself. In spite of the higher albedo of the white membrane, the higher solar radiation transmittance rate of which seemed to cause the slightly higher MRT than the black at the hight of 1.1m and 1.7m. In summary, the performance of the black membrane was slightly better than the white in terms of the air conditioning of the human related space around the height of 1.1m and 1.7m, when the shading membranes were at 2.5m height.

Temperature and Solar Radiation Prediction Performance of High-resolution KMAPP Model in Agricultural Areas: Clear Sky Case Studies in Cheorwon and Jeonbuk Province (고해상도 규모상세화모델 KMAPP의 농업지역 기온 및 일사량 예측 성능: 맑은 날 철원 및 전북 사례 연구)

  • Shin, Seoleun;Lee, Seung-Jae;Noh, Ilseok;Kim, Soo-Hyun;So, Yun-Young;Lee, Seoyeon;Min, Byung Hoon;Kim, Kyu Rang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.312-326
    • /
    • 2020
  • Generation of weather forecasts at 100 m resolution through a statistical downscaling process was implemented by Korea Meteorological Administration Post- Processing (KMAPP) system. The KMAPP data started to be used in various industries such as hydrologic, agricultural, and renewable energy, sports, etc. Cheorwon area and Jeonbuk area have horizontal planes in a relatively wide range in Korea, where there are many complex mountainous areas. Cheorwon, which has a large number of in-situ and remotely sensed phenological data over large-scale rice paddy cultivation areas, is considered as an appropriate area for verifying KMAPP prediction performance in agricultural areas. In this study, the performance of predicting KMAPP temperature changes according to ecological changes in agricultural areas in Cheorwon was compared and verified using KMA and National Center for AgroMeteorology (NCAM) observations. Also, during the heat wave in Jeonbuk Province, solar radiation forecast was verified using Automated Synoptic Observing System (ASOS) data to review the usefulness of KMAPP forecast data as input data for application models such as livestock heat stress models. Although there is a limit to the need for more cases to be collected and selected, the improvement in post-harvest temperature forecasting performance in agricultural areas over ordinary residential areas has led to indirect guesses of the biophysical and phenological effects on forecasting accuracy. In the case of solar radiation prediction, it is expected that KMAPP data will be used in the application model as detailed regional forecast data, as it tends to be consistent with observed values, although errors are inevitable due to human activity in agricultural land and data unit conversion.

Estimation of Precipitable Water from the GMS-5 Split Window Data (GMS-5 Split Window 자료를 이용한 가강수량 산출)

  • 손승희;정효상;김금란;이정환
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.53-68
    • /
    • 1998
  • Observation of hydrometeors' behavior in the atmosphere is important to understand weather and climate. By conventional observations, we can get the distribution of water vapor at limited number of points on the earth. In this study, the precipitable water has been estimated from the split window channel data on GMS-5 based upon the technique developed by Chesters et al.(1983). To retrieve the precipitable water, water vapor absorption parameter depending on filter function of sensor has been derived using the regression analysis between the split window channel data and the radiosonde data observed at Osan, Pohang, Kwangiu and Cheju staions for 4 months. The air temperature of 700 hPa from the Global Spectral Model of Korea Meteorological Administration (GSM/KMA) has been used as mean air temperature for single layer radiation model. The retrieved precipitable water for the period from August 1996 through December 1996 are compared to radiosonde data. It is shown that the root mean square differences between radiosonde observations and the GMS-5 retrievals range from 0.65 g/$cm^2$ to 1.09 g/$cm^2$ with correlation coefficient of 0.46 on hourly basis. The monthly distribution of precipitable water from GMS-5 shows almost good representation in large scale. Precipitable water is produced 4 times a day at Korea Meteorological Administration in the form of grid point data with 0.5 degree lat./lon. resolution. The data can be used in the objective analysis for numerical weather prediction and to increase the accuracy of humidity analysis especially under clear sky condition. And also, the data is a useful complement to existing data set for climatological research. But it is necessary to get higher correlation between radiosonde observations and the GMS-5 retrievals for operational applications.

Atmospheric Aerosol Optical Properties in the Korean Peninsula

  • Oh, Sung-Nam;Sohn, Byung-Ju;Chung, Hyo-Sang;Park, Ki-Jun;Park, Sang-Soon;Hyun, Myung-Suk
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.423-423
    • /
    • 2003
  • The radiative properties of atmospheric aerosol are determined by the mass and chemical characteristics, and optical properties such as aerosol optical depth (AOD), ngstr m parameter ( $\alpha$) and single scattering albedo (SSA). In particular these aerosol optical properties also determine surface temperature perturbation that may give some information in understanding the regional atmospheric radiative forcing. For understanding the radiative forcing and regional surce of aerosol, this paper summarizes and compares the aerosol optical properties results from and compares the atmospheric aerosol optical properties results from two different experiments: Anmyeon 2000 and Jeju 2001. Korea Global Atmosphere Watch Observatory (KGAWO) at Anmyeon island and ACE-Asia super-site at Gosan Jeju island have measured the radiations and aerosols since the year of 2000. The sites are located in the mid-west and south of Korea peninsula where it is strongly affected by the Asian dust coming from China region in every spring. Aerosol optical properties over both sites were measured through the ground-based sun and sky radiometers were analyzed for understanding the radiation and climate properties. Number concentration and chemical components of aerosol were additionally analyzed for the source estimation in the transportation. The frequency distributions of aerosol optical depth are rather narrow with a modal vaiue of 0.38 at both sites. However, the distributions of show one peak (1.13) at Jeju but two peaks (0.63 and 1.13) at Anmyeon. In the cases of Anmyeon, one peak around 0.63 corresponds to relatively dust-free cases, and the second peak around 1.13 characterizes the situation when Asian dust is presented. The correlation between AOD and resulted high correlation on the wide range with high values of optical depth at Anmyeon, otherwise a narrow range of with moderate to low AOD at Jeju. In dust free condition SSA decrease with waveleneth while in the presence of Asian dust SSA either stays neutral or increases slightly with wavelength. The change of surface temperature shows the stronger positive correlations with aerosol optical depth increase at Anmyeon than Jeju. In the chemical properties the aerosol are related to high concentrations in inorganic matters, SO$^4$, NO$_3$, CA2+ in fine and coarse.

  • PDF

INVESTIGATION OF BAIKDU-SAN VOLCANO WITH SPACE-BORNE SAR SYSTEM

  • Kim, Duk-Jin;Feng, Lanying;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.148-153
    • /
    • 1999
  • Baikdu-san was a very active volcano during the Cenozoic era and is believed to be formed in late Cenozoic era. Recently it was also reported that there was a major eruption in or around 1002 A.D. and there are evidences which indicate that it is still an active volcano and a potential volcanic hazard. Remote sensing techniques have been widely used to monitor various natural hazards, including volcanic hazards. However, during an active volcanic eruption, volcanic ash can basically cover the sky and often blocks the solar radiation preventing any use of optical sensors. Synthetic aperture radar(SAR) is an ideal tool to monitor the volcanic activities and lava flows, because the wavelength of the microwave signal is considerably longer that the average volcanic ash particle size. In this study we have utilized several sets of SAR data to evaluate the utility of the space-borne SAR system. The data sets include JERS-1(L-band) SAR, and RADARSAT(C-band) data which included both standard mode and the ScanSAR mode data sets. We also utilized several sets of auxiliary data such as local geological maps and JERS-1 OPS data. The routine preprocessing and image processing steps were applied to these data sets before any attempts of classifying and mapping surface geological features. Although we computed sigma nought ($\sigma$$^{0}$) values far the standard mode RADARSAT data, the utility of sigma nought image was minimal in this study. Application of various types of classification algorithms to identify and map several stages of volcanic flows was not very successful. Although this research is still in progress, the following preliminary conclusions could be made: (1) sigma nought (RADARSAT standard mode data) and DN (JERS-1 SAR and RADARSAT ScanSAR data) have limited usefulness for distinguishing early basalt lava flows from late trachyte flows or later trachyte flows from the old basement granitic rocks around Baikdu-san volcano, (2) surface geological structure features such as several faults and volcanic lava flow channels can easily be identified and mapped, and (3) routine application of unsupervised classification methods cannot be used for mapping any types of surface lava flow patterns.

  • PDF

Retrieval of Land SurfaceTemperature based on High Resolution Landsat 8 Satellite Data (고해상도 Landsat 8 위성자료기반의 지표면 온도 산출)

  • Jee, Joon-Bum;Kim, Bu-Yo;Zo, Il-Sung;Lee, Kyu-Tae;Choi, Young-Jean
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.171-183
    • /
    • 2016
  • Land Surface Temperature (LST) retrieved from Landsat 8 measured from 2013 to 2014 and it is corrected by surface temperature observed from ground. LST maps are retrieved from Landsat 8 calculate using the linear regression function between raw Landsat 8 LST and ground surface temperature. Seasonal and annual LST maps developed an average LST from season to annual, respectively. While the higher LSTs distribute on the industrial and commercial area in urban, lower LSTs locate in surrounding rural, sea, river and high altitude mountain area over Seoul and surrounding area. In order to correct the LST, linear regression function calculate between Landsat 8 LST and ground surface temperature observed 3 Korea Meteorological Administration (KMA) synoptic stations (Seoul(ID: 108), Incheon(ID: 112) and Suwon(ID: 119)) on the Seoul and surrounding area. The slopes of regression function are 0.78 with all data and 0.88 with clear sky except 5 cloudy pixel data. And the original Landsat 8 LST have a correlation coefficient with 0.88 and Root Mean Square Error (RMSE) with $5.33^{\circ}C$. After LST correction, the LST have correlation coefficient with 0.98 and RMSE with $2.34^{\circ}C$ and the slope of regression equation improve the 0.95. Seasonal and annual LST maps represent from urban to rural area and from commercial to industrial region clearly. As a result, the Landsat 8 LST is more similar to the real state when corrected by surface temperature observed ground.

Design and Performance Analysis of Conical Solar Concentrator

  • Na, Mun Soo;Hwang, Joon Yeal;Hwang, Seong Geun;Lee, Joo Hee;Lee, Gwi Hyun
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.21-29
    • /
    • 2018
  • Purpose: The objective of this study is to evaluate the performance of the conical solar concentrator (CSC) system, whose design is focused on increasing its collecting efficiency by determining the optimal conical angle through a theoretical study. Methods: The design and thermal performance analysis of a solar concentrator system based on a $45^{\circ}$ conical concentrator were conducted utilizing different mass flow rates. For an accurate comparison of these flow rates, three equivalent systems were tested under the same operating conditions, such as the incident direct solar radiation, and ambient and inlet temperatures. In order to minimize heat loss, the optimal double tube absorber length was selected by considering the law of reflection. A series of experiments utilizing water as operating fluid and two-axis solar tracking systems were performed under a clear or cloudless sky. Results: The analysis results of the CSC system according to varying mass flow rates showed that the collecting efficiency tended to increase as the flow rate increased. However, the collecting efficiency decreased as the flow rate increased beyond the optimal value. In order to optimize the collecting efficiency, the conical angle, which is a design factor of CSC, was selected to be $45^{\circ}$ because its use theoretically yielded a low heat loss. The collecting efficiency was observed to be lowest at 0.03 kg/s and highest at 0.06 kg/s. All efficiencies were reduced over time because of variations in ambient and inlet temperatures throughout the day. The maximum efficiency calculated at an optimum flow rate of 0.06 kg/s was 85%, which is higher than those of the other flow rates. Conclusions: It was reasonable to set the conical angle and mass flow rate to achieve the maximum CSC system efficiency in this study at $45^{\circ}$ and 0.06 kg/s, respectively.

Observation of the Cosmic Near-Infrared Background with the CIBER rocket

  • Kim, Min-Gyu;Matsumoto, T.;Lee, Hyung-Mok;Arai, T.;Battle, J.;Bock, J.;Brown, S.;Cooray, A.;Hristov, V.;Keating, B.;Korngut, P.;Lee, Dae-Hee;Levenson, L.R.;Lykke, K.;Mason, P.;Matsuura, S.;Nam, U.W.;Renbarger, T.;Smith, A.;Sullivan, I.;Wada, T.;Zemcov, M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.42-42
    • /
    • 2012
  • The First stars (Pop.III stars) in the universe are expected to be formed between the recombination era at z - 1100 and the most distant quasar (z - 8). They have never been directly detected due to its faintness so far, but can be observed as a background radiation at around 1${\mu}m$ which is called the Cosmic Near-Infrared Background (CNB). Main part of the CNB is thought to be redshifted Lyman-alpha from gas clouds surrounding the Pop.III stars. Until now, the COBE (COsmic Background Explorer) and the IRTS (Infrared Telescope in Space) observed excess emission over the background due to galaxies. To confirm the COBE and the IRTS results and pursue more observational evidences, we carried out the sounding rocket experiment named the Cosmic Infrared Background ExpeRiment (CIBER). The CIBER is successfully launched on July 10, 2010 at White Sands Missile Range, New Mexico, USA. It consists of three kinds of instruments. We report the results obtained by LRS (Low Resolution Spectrometer) which is developed to fill the uncovered spectrum around 1${\mu}m$. LRS is a refractive telescope of 5.5 cm aperture with spectral resolution of 20 - 30 and wavelength coverage of 0.7 to 2.0${\mu}m$. After subtracting foreground components (zodiacal light, integrated star light and diffuse galactic light) from the sky brightness of observed five fields, there remained significant residual emission (even for the lower limit case) consistent with the IRTS and the COBE results. In addition, there exists a clear gap at 0.7 - 0.8${\mu}m$ in the CNB spectrum over the background due to galaxies according to recent results (Matsuoka et al. 2011; Mattila et al. 2011). The origin of the excess emission could be ascribed to the Pop.III stars with its active era of z = 7 - 10.

  • PDF

Evaluation of Rededge-M Camera for Water Color Observation after Image Preprocessing (영상 전처리 수행을 통한 Rededge-M 카메라의 수색 관측에의 활용성 검토)

  • Kim, Wonkook;Roh, Sang-Hyun;Moon, Yongseon;Jung, Sunghun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.167-175
    • /
    • 2019
  • Water color analysis allows non-destructive estimation of abundance of optically active water constituents in the water body. Recently, there have been increasing needs for light-weighted multispectral cameras that can be integrated with low altitude unmanned platforms such as drones, autonomous vehicles, and heli-kites, for the water color analysis by spectroradiometers. This study performs the preprocessing of the Micasense Rededge-M camera which recently receives a growing attention from the earth observation community for its handiness and applicability for local environment monitoring, and investigates the applicability of Rededge-M data for water color analysis. The Vignette correction and the band alignment were conducted for the radiometric image data from Rededge-M, and the sky, water, and solar radiation essential for the water color analysis, and the resultant remote sensing reflectance were validated with an independent hyperspectral instrument, TriOS RAMSES. The experiment shows that Rededge-M generally satisfies the basic performance criteria for water color analysis, although noticeable differences are observed in the blue (475 nm) and the near-infrared (840 nm) band compared with RAMSES.