• Title/Summary/Keyword: Sky Conditions

Search Result 167, Processing Time 0.02 seconds

Performance Assessment of Light Pipe System for the Advanced Luminous Environment of the Underground Parking Lot (지하주차장 빛환경 개선을 위한 광파이프 시스템의 채광성능 평가에 관한 연구)

  • Shin, Ju-Young;Hwang, Tae-Yon;Kim, Jeong-Tai
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.1
    • /
    • pp.25-33
    • /
    • 2010
  • Use of daylight in underground space interacts with physiological need for human beings and provides relief from feeling secluded. Light pipe system can deliver natural light into the space where it is needed and can be used as primary or a secondary light source with benefits of energy, productivity and health. To use light pipe system effectively under various conditions, it is important to investigate the effectiveness of light pipe system with reliable monitoring protocol. This paper presents the results of light pipe system performance used in underground parking lot under different sky conditions. Comparisons were made between the illuminance standards of underground parking lot and the monitored data. The results indicated that adequate illuminance level was shown until 4.5m distance from the light pipe under clear sky condition. However, additional lighting device showed be used under overcast sky to meet the proper illuminance level.

Space study on Lighting Performance For Residential Buildings By using Simulation Analysis (시뮬레이션 분석기법을 이용한 주거용 건물의 공간별 채광성능 연구)

  • Lim, Tae Sub;Lim, Jung Hee;Kim, Byung Seon
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.97-104
    • /
    • 2013
  • This proposed simulation-based design study is based on the design of residential high-rise buildings in South-Korea. the purpose of this study is to evaluate the amount of daylighting performance passing through building glazing according to sky conditions, orientation of windows and each space of Apartment buildings. The clear sky includes sunshine and is intense and brighter at the horizon than at the zenith, except in the area around the sun. Daylight received within a building is directly dependent upon the sun's position and the atmospheric conditions. Orientation of the building generally used to refer to solar orientation which is the siting of building with respect to solar access. Although any building will have different orientations for its different sides, the orientation can refer to a particular room, or to the most important facade of the building. north-facing windows receive twice the winter sun than east and west facing windows, allowing light and warmth into the home. They can be easily shaded from the high summer sun to help keep the house cool. Ideally, the glazing area should be between 10-25% of the floor area of the room. This paper was calculated by a Desktop Radiance program. The space dimensions were based on a unit module of real constructed apartment having divided into five sections such as living room, room1, room2, room3 and kitchen.

Effects of Ozone, Cloud and Snow on Surface UV Irradiance (지표 자외선 복사 변화에 미치는 오존 전량, 구름 및 적설 효과)

  • Lee, Yun-Gon;Kim, Jhoon;Lee, Bang-Yong;Cho, Hi-Ku
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.439-451
    • /
    • 2004
  • Total solar irradiance (750), total UV irradiunce (TUV) and erythemal UV irradiance (EUV) measured at King Sejong station $(62.22^{\circ}S,\;58.78^{\circ}W)$ in west Antarctica have been used together with total ozone, cloud amount and snow cover to examine the effects of ozone, cloud and snow surface on these surface solar inadiunce over the period of 1998-2003. The data of three solar components for each scan were grouped by cloud amount, n in oktas $(0{\leq}n<3,\;3{\leq}n<4,\;4{\leq}n<5,\;5{\leq}n<6,\;6{\leq}n<7\;and\;7{\leq}n<8)$ and plotted against solar zenith angle (SZA) over the range of $45^{\circ}\;to\;75^{\circ}$. The radiation amplification factor (RAE) is used to quantify ozone effect on EUV. RAF of EUV decreases from 1.51 to 0.94 under clear skies but increases from 0.94 to 1.85 under cloudy skies as SZA increases, and decreases from 1.51 to 1.01 as cloud amount increases. The effects of cloud amount and snow surface on EUV are estimated as a function of SZA and cloud amount after normalization of the data to the reference total ozone of 300 DU. In order to analyse the transmission of solar radiation by cloud, regression analyses have been performed for the maximum values of solar irradiance on clear sky conditions $(0{\leq}n<3)$ and the mean values on cloudy conditions, respectively. The maximum regression values for the clear sky cases were taken to represent minimum aerosol conditions fur the site and thus appropriate for use as a normalization (reference) factor for the other regressions. The overall features for the transmission of the three solar components show a relatively high values around SZAs of $55^{\circ}\;and\;60^{\circ}$ under all sky conditions and cloud amounts $4{\leq}n<5$ and $5{\leq}n<6$. The transmission is, in general, the largest in TUV and the smallest in EUV among the three components of the solar irradiance. If the ground is covered with snow on partly cloudy days $(6{\leq}n<7)$, EUV increases by 20 to 26% compared to snow-free surface around SZA $60^{\circ}-65^{\circ}$, due to multiple reflections and scattering between the surface and the clouds. The relative difference between snow surface and snow-free surface slowly increases from 9% to 20% as total ozone increases from 100 DU to 400 DU under partly cloud conditions $(3{\leq}n<6)$ at SZA $60^{\circ}$. The snow effects on TUV and TSO are relatively high with 32% and 34%, respectively, under clear sky conditions, while the effects changes to 36% and 20% for TUV and TSO, respectively, as cloud amount increases.

Innovative Design and Practice in Horizontal Skyscraper-ChongQing Raffles

  • Li-Gang, Zhu
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.3
    • /
    • pp.197-205
    • /
    • 2022
  • One of important design challenges in Chongqing Raffles City Plaza project is Sky Bridge structural design and its connection scheme in high level. This article systematically describes the structural system and its design and analysis methodology, with discussing the impacts on structural performance due to different connection approaches. The seismic isolation scheme in high level is innovatively adopted to the final design. Under the conditions of various load cases, the different models and assumptions are implemented. A full assessment on Sky Bridge's structural performance, seismic isolation, and its connection is conducted in terms of seismic performance based design. By co-operating with architecture, MEP and other disciplines, the structural economy index is fulfilled.

Development of A Prototype Device to Capture Day/Night Cloud Images based on Whole-Sky Camera Using the Illumination Data (정밀조도정보를 이용한 전천카메라 기반의 주·야간 구름영상촬영용 원형장치 개발)

  • Lee, Jaewon;Park, Inchun;cho, Jungho;Ki, GyunDo;Kim, Young Chul
    • Atmosphere
    • /
    • v.28 no.3
    • /
    • pp.317-324
    • /
    • 2018
  • In this study, we review the ground-based whole-sky camera (WSC), which is developed to continuously capture day and night cloud images using the illumination data from a precision Lightmeter with a high temporal resolution. The WSC is combined with a precision Lightmeter developed in IYA (International Year of Astronomy) for analysis of an artificial light pollution at night and a DSLR camera equipped with a fish-eye lens widely applied in observational astronomy. The WSC is designed to adjust the shutter speed and ISO of the equipped camera according to illumination data in order to stably capture cloud images. And Raspberry Pi is applied to control automatically the related process of taking cloud and sky images every minute under various conditions depending on illumination data from Lightmeter for 24 hours. In addition, it is utilized to post-process and store the cloud images and to upload the data to web page in real time. Finally, we check the technical possibility of the method to observe the cloud distribution (cover, type, height) quantitatively and objectively by the optical system, through analysis of the captured cloud images from the developed device.

The effects of clouds on enhancing surface solar irradiance (구름에 의한 지표 일사량의 증가)

  • Jung, Yeonjin;Cho, Hi Ku;Kim, Jhoon;Kim, Young Joon;Kim, Yun Mi
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.131-142
    • /
    • 2011
  • Spectral solar irradiances were observed using a visible and UV Multi-Filter Rotating Shadowband Radiometer on the rooftop of the Science Building at Yonsei University, Seoul ($37.57^{\circ}N$, $126.98^{\circ}E$, 86 m) during one year period in 2006. 1-min measurements of global(total) and diffuse solar irradiances over the solar zenith angle (SZA) ranges from $20^{\circ}$ to $70^{\circ}$ were used to examine the effects of clouds and total optical depth (TOD) on enhancing four solar irradiance components (broadband 395-955 nm, UV channel 304.5 nm, visible channel 495.2 nm, and infrared channel 869.2 nm) together with the sky camera images for the assessment of cloud conditions at the time of each measurement. The obtained clear-sky irradiance measurements were used for empirical model of clear-sky irradiance with the cosine of the solar zenith angle (SZA) as an independent variable. These developed models produce continuous estimates of global and diffuse solar irradiances for clear sky. Then, the clear-sky irradiances are used to estimate the effects of clouds and TOD on the enhancement of surface solar irradiance as a difference between the measured and the estimated clear-sky values. It was found that the enhancements occur at TODs less than 1.0 (i.e. transmissivity greater than 37%) when solar disk was not obscured or obscured by optically thin clouds. Although the TOD is less than 1.0, the probability of the occurrence for the enhancements shows 50~65% depending on four different solar radiation components with the low UV irradiance. The cumulus types such as stratoculmus and altoculumus were found to produce localized enhancement of broadband global solar irradiance of up to 36.0% at TOD of 0.43 under overcast skies (cloud cover 90%) when direct solar beam was unobstructed through the broken clouds. However, those same type clouds were found to attenuate up to 80% of the incoming global solar irradiance at TOD of about 7.0. The maximum global UV enhancement was only 3.8% which is much lower than those of other three solar components because of the light scattering efficiency of cloud drops. It was shown that the most of the enhancements occurred under cloud cover from 40 to 90%. The broadband global enhancement greater than 20% occurred for SZAs ranging from 28 to $62^{\circ}$. The broadband diffuse irradiance has been increased up to 467.8% (TOD 0.34) by clouds. In the case of channel 869.0 nm, the maximum diffuse enhancement was 609.5%. Thus, it is required to measure irradiance for various cloud conditions in order to obtain climatological values, to trace the differences among cloud types, and to eventually estimate the influence on solar irradiance by cloud characteristics.

Comparison of Marine Insolation Estimating Methods in the Adriatic Sea

  • Byun, Do-Seong;Pinardi, Nadia
    • Ocean Science Journal
    • /
    • v.42 no.4
    • /
    • pp.211-222
    • /
    • 2007
  • We compare insolation results calculated from two well-known empirical formulas (Socket and Beaudry's SB73 formula and the original Smithsonian (SMS) formula) and a radiative transfer model using input data predicted from meteorological weather-forecast models, and review the accuracy of each method. Comparison of annual mean daily irradiance values for clear-sky conditions between the two formulas shows that, relative to the SMS, the SB73 underestimates spring values by 9 W $m^{-2}$ in the northern Adriatic Sea, although overall there is a good agreement between the annual results calculated with the two formulas. We also elucidate the effect on SMS of changing the 'Sun-Earth distance factor (f)', a parameter which is commonly assumed to be constant in the oceanographic context. Results show that the mean daily solar radiation for clear-sky conditions in the northern Adriatic Sea can be reduced as much as 12 W $m^{-2}$ during summer due to a decrease in the f value. Lastly, surface irradiance values calculated from a simple radiative transfer model (GM02) for clear-sky conditions are compared to those from SB73 and SMS. Comparison with iu situ data in the northern Adriatic Sea shows that the GM02 estimate gives more realistic surface irradiance values than SMS, particularly during summer. Additionally, irradiance values calculated by GM02 using the buoy meteorological fields and ECMWF (The European Centre for Medium Range Weather Forecasts) meteorological data show the suitability of the ECMWF data usage. Through tests of GM02 sensitivity to key regional meteorological factors, we explore the main factors contributing significantly to a reduction in summertime solar irradiance in the Adriatic Sea.

Recent Variations of UV Irradiance at Seoul 2004~2010 (서울의 최근 자외선 복사의 변화 2004~2010)

  • Kim, Jhoon;Park, Sang Seo;Cho, Nayeong;Kim, Woogyung;Cho, Hi Ku
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.429-438
    • /
    • 2011
  • The climatology of surface UV radiation for Seoul, presented in Cho et al. (1998; 2001), has been updated using measurement of surface erythemal ultraviolet (EUV) and total ultraviolet (TUV) irradiance (wavelength 286.5~363.0 nm) by a Brewer Spectrophotometer (MK-IV) for the period 2004~2010. The analysis was also carried out together with the broadband total (global) solar irradiance (TR ; 305~2800 nm) and cloud amount to compare with the UV variations, measured by Seoul meteorological station of Korean Meteorological Agency located near the present study site. Under all-sky conditions, the day-to-day variability of EUV exhibits annual mean of 98% in increase and 31% in decrease. It has been also shown that the EUV variability is 17 times as high as the total ozone in positive change, whereas this is 6 times higher in negative change. Thus, the day to day variability is dominantly caused rather by the daily synoptic situations than by the ozone variability. Annual mean value of daily EUV and TUV shows $1.62kJm^{-2}$ and $0.63MJm^{-2}$ respectively, whereas mean value of TR is $12.4MJm^{-2}$ ($143.1Wm^{-2}$). The yearly maximum in noon-time UV Index (UVI) varies between 9 and 11 depending on time of year. The highest UVI shows 11 on 20 July, 2008 during the period 2004~2010, but for the period 1994~2000, the index of 12 was recorded on 13 July, 1994 (Cho et al., 2001). A 40% of daily maximum UVI belongs to "low (UVI < 2)", whereas the UVI less than 5% of the maximum show "very high (8 < UVI < 10)". On average, the maximum UVI exceeded 8 on 9 days per year. The values of Tropospheric Emission Monitoring Internet Service (TEMIS) EUV and UVI under cloud-free conditions are 1.8 times and 1.5 times, respectively, higher than the all-sky measurements by the Brewer. The trend analysis in fractional deviation of monthly UV from the reference value shows a decrease of -0.83% and -0.90% $decade^{-1}$ in the EUV and TUV, respectively, whereas the TR trend is near zero (+0.11% $decade^{-1}$). The trend is statistically significant except for TR trend (p = 0.279). It is possible that the recent UV decrease is mainly associated with increase in total ozone, but the trend in TR can be attributed to the other parameters such as clouds except the ozone. Certainly, the cloud effects suggest that the reason for the differences between UV and TR trends can be explained. In order to estimate cloud effects, the EUV, TUV and TR irradiances have been also evaluated for clear skies (cloud cover < 25%) and cloudy skies (cloud cover ${\geq}$ 75%). Annual mean values show that EUV, TUV and TR are $2.15kJm^{-2}$, $0.83MJm^{-2}$, and $17.9MJm^{-2}$ for clear skies, and $1.24kJm^{-2}$, $0.46MJm^{-2}$, and $7.2MJm^{-2}$ for cloudy skies, respectively. As results, the transmission of radiation through clouds under cloudy-sky conditions is observed to be 58%, 55% and 40% for EUV, TUV and TR, respectively. Consequently, it is clear that the cloud effects on EUV and TUV are 18% and 15%, respectively lower than the effects on TR under cloudy-sky conditions. Clouds under all-sky conditions (average of cloud cover is 5 tenths) reduced the EUV and TUV to about 25% of the clear-sky (cloud cover < 25%) values, whereas for TR, this was 31%. As a result, it is noted that the UV radiation is attenuated less than TR by clouds under all weather conditions.

MAGNETIC FIELD IN THE LOCAL UNIVERSE AND THE PROPAGATION OF UHECRS

  • DOLAG KLAUS;GRASSO DARIO;SPRINGEL VOLKER;TKACHEV IGOR
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.427-431
    • /
    • 2004
  • We use simulations of large-scale structure formation to study the build-up of magnetic fields (MFs) in the intergalactic medium. Our basic assumption is that cosmological MFs grow in a magnetohy-drodynamical (MHD) amplification process driven by structure formation out of a magnetic seed field present at high redshift. This approach is motivated by previous simulations of the MFs in galaxy clusters which, under the same hypothesis that we adopt here, succeeded in reproducing Faraday rotation measurements (RMs) in clusters of galaxies. Our ACDM initial conditions for the dark matter density fluctuations have been statistically constrained by the observed large-scale density field within a sphere of 110 Mpc around the Milky Way, based on the IRAS 1.2-Jy all-sky redshift survey. As a result, the positions and masses of prominent galaxy clusters in our simulation coincide closely with their real counterparts in the Local Universe. We find excellent agreement between RMs of our simulated galaxy clusters and observational data. The improved numerical resolution of our simulations compared to previous work also allows us to study the MF in large-scale filaments, sheets and voids. By tracing the propagation of ultra high energy (UHE) protons in the simulated MF we construct full-sky maps of expected deflection angles of protons with arrival energies $E = 10^{20}\;eV$ and $4 {\times} 10^{19}\;eV$, respectively. Accounting only for the structures within 110 Mpc, we find that strong deflections are only produced if UHE protons cross galaxy clusters. The total area on the sky covered by these structures is however very small. Over still larger distances, multiple crossings of sheets and filaments may give rise to noticeable deflections over a significant fraction of the sky; the exact amount and angular distribution depends on the model adopted for the magnetic seed field. Based on our results we argue that over a large fraction of the sky the deflections are likely to remain smaller than the present experimental angular sensitivity. Therefore, we conclude that forthcoming air shower experiments should be able to locate sources of UHE protons and shed more light on the nature of cosmological MFs.

Application of ANFIS Power Control for Downlink CDMA-Based LMDS Systems

  • Lee, Ze-Shin;Tsay, Mu-King;Liao, Chien-Hsing
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.182-192
    • /
    • 2009
  • Rain attenuation and intercell interference are two crucial factors in the performance of broadband wireless access networks such as local multipoint distribution systems (LMDS) operating at frequencies above 20 GHz. Power control can enhance the performance of downlink CDMA-based LMDS systems by reducing intercell interference under clear sky conditions; however, it may damage system performance under rainy conditions. To ensure robust operation under both clear sky and rainy conditions, we propose a novel power-control scheme which applies an adaptive neuro-fuzzy inference system (ANFIS) for downlink CDMA-based LMDS systems. In the proposed system, the rain rate and the number of users are two inputs of the fuzzy inference system, and output is defined as channel quality, which is applied in the power control scheme to adjust the power control region. Moreover, ITU-R P.530 is employed to estimate the rain attenuation. The influence of the rain rate and the number of users on the distance-based power control (DBPC) scheme is included in the simulation model as the training database. Simulation results indicate that the proposed scheme improves the throughput of the DBPC scheme.

  • PDF