• 제목/요약/키워드: Skin-color

검색결과 1,155건 처리시간 0.029초

광원에 독립적인 피부색 복원을 위한 색 항등성 기법 분석 (Analysis of Color Constancy Methods for Recovering Skin Color Independent of Illuminants)

  • 이우람;황동국;전병민
    • 한국통신학회논문지
    • /
    • 제36권10C호
    • /
    • pp.621-628
    • /
    • 2011
  • 영상에서 피부색은 얼굴 영상 기반의 검출 및 인식 시스템에서 중요한 단서로 사용되지만 영상 획득시의 광원에 따라 상이하게 표현되기 때문에 사용의 어려움이 있다. 이러한 문제를 위해 본 논문에서는 Retinex, Gray World, White Patch, Simplified Horn, Shades of grey, 그리고 Edge-Based color constancy 색 항등성 기법을 대상으로 피부색 복원에 관한 성능을 비교하고, 자연 영상을 이용하여 피부색 검출 성능을 평가한다. 이를 위해 Caltech Face Database의 영상들에 유색 광원의 효과를 부가하여 생성된 실험 영상을 생성했다. 이후 각 기법에 따른 피부색 복원의 일관성을 수치적으로 평가하기 위하여 Cb-Cr 히스토그램을 기반으로 결과 영상들의 표준편차를 계산하였으며, 피부색 검출 성능 실험을 위해서 YCbCr과 RGB 기반의 경출 기법을 사용하였다. 실험 결과 Gray World 기법은 타 기법에 비해 높은 성능을 나타냈으며, 색 항등성 기법의 적용을 통해 광원의 영향을 받은 피부색을 색 공간내의 일정한 범위로 복원하는 것이 가능하였다.

형태분석과 피부색모델을 다층 퍼셉트론으로 사용한 운전자 얼굴추출 기법 (Driver face localization using morphological analysis and multi-layer preceptron as a skin-color model)

  • 이종수
    • 한국정보전자통신기술학회논문지
    • /
    • 제6권4호
    • /
    • pp.249-254
    • /
    • 2013
  • In the area of computer vision, face recognition is being intensively researched. It is generally known that before a face is recognized it must be localized. Skin-color information is an important feature to segment skin-color regions. To extract skin-color regions the skin-color model based on multi-layer perceptron has been proposed. Extracted regions are analyzed to emphasize ellipsoidal regions. The results from this study show good accuracy for our vehicle driver face detection system.

딥러닝을 이용한 사용자 피부색 기반 파운데이션 색상 추천 기법 연구 (A Study On User Skin Color-Based Foundation Color Recommendation Method Using Deep Learning)

  • 정민욱;김현지;곽채원;오유수
    • 한국멀티미디어학회논문지
    • /
    • 제25권9호
    • /
    • pp.1367-1374
    • /
    • 2022
  • In this paper, we propose an automatic cosmetic foundation recommendation system that suggests a good foundation product based on the user's skin color. The proposed system receives and preprocesses user images and detects skin color with OpenCV and machine learning algorithms. The system then compares the performance of the training model using XGBoost, Gradient Boost, Random Forest, and Adaptive Boost (AdaBoost), based on 550 datasets collected as essential bestsellers in the United States. Based on the comparison results, this paper implements a recommendation system using the highest performing machine learning model. As a result of the experiment, our system can effectively recommend a suitable skin color foundation. Thus, our system model is 98% accurate. Furthermore, our system can reduce the selection trials of foundations against the user's skin color. It can also save time in selecting foundations.

명암도에 따른 CrCb 정보를 이용한 얼굴 검출에 관한 연구 (A Study on Face Detection Using CrCb Model by Intensity)

  • 남미영;이필규
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 추계학술발표논문집
    • /
    • pp.85-88
    • /
    • 2002
  • 얼굴 영역을 검출하는 데 있어서 가장 기본적이면서도 중요한 정보가 컬러 정보이다. 하지만 컬러정보는 사용하는 컬러모델링 및 얼굴의 Skin Color를 평가하는 범위를 어떻게 정의하느냐에 따라 얼굴의 검출 성능에 많은 영향을 끼친다. 본 논문에서는 얼굴 영역을 검출하기 위한 첫 번째 조건으로 Skin color영역을 색상값과 다양한 데이터로부터 명암도에 따른 Skin color의 분포와 비율을 학습 함으로써 Skin color 영역을 검출 성능을 높이며, 퍼지 아트 알고리즘을 이용하여 얼굴과 비얼굴 데이터에 인증함으로써 얼굴 영역의 검출 성능을 높인다.

  • PDF

Non-parametric Density Estimation with Application to Face Tracking on Mobile Robot

  • Feng, Xiongfeng;Kubik, K.Bogunia
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.49.1-49
    • /
    • 2001
  • The skin color model is a very important concept in face detection, face recognition and face tracking. Usually, this model is obtained by estimating a probability density function of skin color distribution. In many cases, it is assumed that the underlying density function follows a Gaussian distribution. In this paper, a new method for non-parametric estimation of the probability density function, by using feed-forward neural network, is used to estimate the underlying skin color model. By using this method, the resulting skin color model is better than the Gaussian estimation and substantially approaches the real distribution. Applications to face detection and face ...

  • PDF

얼굴 기하에 기반한 얼굴 검출 알고리듬 (Face Detction Using Face Geometry)

  • 류세진;은승엽
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.49-52
    • /
    • 2002
  • This paper presents a fast algorithm for face detection from color images on internet. We use Mahalanobis distance between standard skin color and actual pixel color on IQ color space to segment skin color regions. The skin color regions are the candidate face region. Further, the locations of eyes and mouth regions are found by computing average pixel values on horizontal and vertical pixel lines. The geometry of mouth and eye locations is compared to the standard face geometry to eliminate false face regions. Our Method is simple and fast so that it can be applied to face search engine for internet.

  • PDF

한국노인 여성의 피부색 분류와 선호색에 관한 연구 (Classifications of Skin Colors on Korean Elderly Women and their Preference Colors)

  • 김구자;정혜원
    • 한국의류학회지
    • /
    • 제26권2호
    • /
    • pp.303-314
    • /
    • 2002
  • The colors of apparel have become an important element to be used strategically in order to give differentiated character at the level of fiber and fabric production. The colors of apparel have a close relationship with the skin colors of consumers and their preference colors. This study was carried out to classify the skin colors of Korean elderly women into several similar skin colors and to analyse their preference colors. Sample size was 471 Korean elderly women. With color spectrometer, JX-777, we measured 4 points of the body; cheek with removing cosmetics off, forehead, rear neck and arm on the interior part near elbow. All subjects had been shown with 40 color chips and answered the preference colors of apparel and the preference colors. Data weirs analysed to classify skin colors using K-means Cluster Analysis and Duncan test. Independent variables for Cluster Analysis were 12 variables out of L value, a value and b value of 4 points. In doing so, we used SPSS WIN 10 statistical package. Findings were as follows: 1) The skin colors of the Korean elderly women were composed of skin colors of YR, R, and Y. 2) 355 subjects were classified into 4 kinds of skin color groups. 3) The average face color of type 1 was 6.7YR 5.1/4.3 and 56 observations out of 355 subjects were composed of Type 1 and of Type 2 was 6.1YR 6.1/4.5 and 166 observations out of 355 and of 3 Type 6. YR 4.8/4.2 and 75 observations out of 355 and of Type was 6.17 YR 5.7/4.7 and 58 observations out of 355. 4) The average skin color of Type 1 was 7.0YR 5.9/4.4 and of Type 2 was 7.2YR 6.3/4.2 and of Type 3 was 7.0YR 6.2/4.2 and of Type 4 was 7.6YR 5.4/4.2 respectively. 5) The mean values of 12 variables between the 4 classified face color and skin color groups showed significantly different except H value of skin color. 6) All 4 groups showed that the most preference color of apparel and the most preference color were 2.5R 5/14 respectively.

피부색상과 복합 특징을 이용한 유해영상 인식 (Adult Image Detection Using Skin Color and Multiple Features)

  • 장석우;최형일;김계영
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권12호
    • /
    • pp.27-35
    • /
    • 2010
  • 유해영상 검출에서 정확하게 피부 색상 영역을 획득하는 것은 매우 중요하다. 그러나 기존의 방법들은 서로 다른 인종, 조명, 화장, 사용된 카메라 등과 같은 여러 원인으로 인해 피부 색상 추출에 여전히 문제를 가지고 있으며, 사전에 미리 정해진 피부 색상 분포 모델을 이용하여 영상에서 피부 영역을 검출한다. 이러한 문제를 해결하기 위해 본 논문에서는 눈 주변 영역에서 샘플을 추출하여 입력 영상에 최적으로 적합된 피부 색상 분포 모델을 생성하여 피부 영역을 강건하게 분할하고, 분할된 피부 영역에서 성인 영상을 대표할 수 있는 특징을 추출한 후, 분할된 피부 영역이 나체의 몸체를 포함하고 있는지를 뉴럴 네트워크 다층 퍼셉트론을 통해 여러 대표적인 특징들을 통합하면서 추론하는 새로운 방법을 제안하다. 본 논문의 실험에서는 피부 색상 영역 분할과 성인영상 검출의 두 가지 성능 측면에서 제안한 방법의 성능이 기존의 방법에 비해 보다 우수함을 보인다. 본 논문에서 제안한 강건한 유해영상검출 기법은 얼굴 검출, 성인영상 필터링 등과 같은 관련된 여러 응용 분야에서 유용하게 활용될 것이라 기대된다.

피부색 칼라 분포 특성을 이용한 조명 색도 검출 (Estimation of Illuminant Chromaticity by Analysis of Human Skin Color Distribution)

  • 김정엽
    • Journal of Platform Technology
    • /
    • 제11권5호
    • /
    • pp.59-71
    • /
    • 2023
  • 본 논문에서는 영상을 촬영한 장면의 조명 색도를 추정하는 방법을 제안한다. 기존의 피부색을 이용한 조명 색도 추정 방법은 Storring, Bianco 등이 제안하였다. Storring은 피부색 분포 특성, 완전 복사체 궤적을 이용하였으나 완전 복사체 궤적과 CIE-xy 자료의 연계성이 저하되는 문제가 있다. Bianco 등은 표준조명에서의 피부색 분포와 입력 영상의 피부색 분포를 대조하여 조명 색도를 추정하였다. 이 방법은 다양한 조명에서의 피부색을 최대한 많이 측정하고 확보하기가 어렵다. 제안한 방법은 피부색도 정보와 조명색도 간의 관계를 분석하여 임의의 입력 영상에 대한 조명 색도를 추정할 수 있다. 추정 방법은 분석단계와 테스트 단계로 구분되며, 데이터 셋을 분석 군과 테스트 군으로 분류하여 사용하였다. 분석 군의 모든 입력영상으로부터 각각 피부색 영역을 구하여 피부 색도를 계산한다. 피부 색도의 평균값 집합과 기준 조명 색도 집합의 상관 관계를 분석하여 사상을 구한다. 계산된 사상을 분석 군의 모든 입력 영상에 적용하여 조명 색도를 추정하고 기준 조명색도와의 오차를 계산하고, 오차의 변화가 없을 때까지 상기 과정을 반복하여 안정적인 사상을 구한다. 구해진 사상을 분석 단계와 유사하게 테스트 군 영상에 적용하여 조명 색도를 추정한다. 피부영역과 조명 기준정보가 포함된 데이터 셋이 독립적으로 존재하지 않기 때문에 인텔 TAU 데이터셋의 영상 일부를 이용하여 실험 데이터 셋을 구성하였다. 유사한 이론 기반의 기존 방법인 Finlayson에 비하여 40% 이상, Zhang에 대해서는 11%, Kim에 대해서는 16% 정도의 성능개선을 보였다.

  • PDF

신경망과 적응적 스킨 칼라 모델을 이용한 얼굴 영역 검출 기법 (Human Face Detection from Still Image using Neural Networks and Adaptive Skin Color Model)

  • 손정덕;고한석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.579-582
    • /
    • 1999
  • In this paper, we propose a human face detection algorithm using adaptive skin color model and neural networks. To attain robustness in the changes of illumination and variability of human skin color, we perform a color segmentation of input image by thresholding adaptively in modified hue-saturation color space (TSV). In order to distinguish faces from other segmented objects, we calculate invariant moments for each face candidate and use the multilayer perceptron neural network of backpropagation algorithm. The simulation results show superior performance for a variety of poses and relatively complex backgrounds, when compared to other existing algorithm.

  • PDF