• Title/Summary/Keyword: Skin-Color Detection

Search Result 291, Processing Time 0.028 seconds

A Method for Face Detection using Region Growing of Skin Color (피부색 영역 확장에 의한 얼굴 영역 추출 방법)

  • 문대성;김성영;김민환
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.11a
    • /
    • pp.256-261
    • /
    • 2000
  • 디지털 방송, 웹의 발전으로 내용 기반 검색, 비디오 인덱싱, 비디오 검색 등의 시스템들이 많이 연구, 개발되고 있으며, 이러한 시스템에서는 사람을 주제로 검색하는 요구가 많이 발생한다. 대부분의 얼굴 영역 추출 및 인식 시스템들은 질감, 모양, 움직임, 칼라 등의 특징들을 이용하는데, 이들 중 칼라 특징은 기존 시스템의 첫 번째 처리 단계에서 많이 사용된다. 하지만, 복잡한 배경, 조명, 화장(make up), 잡영들 때문에 미리 정의된 단일 칼라 임계값을 이용하여 얼굴 영역과 비 얼굴 영역으로 구분하면 정확한 추출 결과를 얻기 힘들다는 문제가 있다. 본 논문에서는, 점진적으로 피부색 영역을 확장시키면서 얼굴 영역을 추출하는 방법을 제안한다. 이때 확장 단계에서 얼굴 영역을 판단하기 위해, 일굴 각 기관들의 위치적 정보를 사용하였다. 얼굴 기관은 눈과 입을 사용했는데, 여러 가지 요인으로 인해 이들을 정확하게 추출하기가 어렵기 때문에, 각 단계에서 얼굴 후보 영역 내부의 수평 방향성을 가지는 경계를 눈과 입의 영역으로 간주했다. 실험을 통해, 제안한 방법이 하이라이트(highlight)에 의해 얼굴 영역의 일부가 왜곡된 경우와 얼굴 영역이 피부색과 유사한 배경에 인접해 있는 경우에 대해서도 강인하게 얼굴 영역을 추출할 수 있음을 확인하였다.

  • PDF

Real-Time Face Detection in Video using Skin Color Modelling (스킨 칼라 모델링을 이용한 실시간 동영상 얼굴 영역 추출)

  • Han, Tae-Kyu;Kim, Young-Seop;Rhee, Sang-Burm
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.831-834
    • /
    • 2005
  • 실시간 안면 생체정보 추출 알고리즘은 다양한 멀티미디어 및 보안 시스템에 적용이 가능하다. 그러나 추출율과 시간 이득이라는 측면에서 모두 만족하는 알고리즘은 제안된 사례가 극히 드물며, 그 결과 역시 만족스럽지 못한 경우가 많았다. 본 연구에서는 스킨 칼라 모델을 기반으로 하여 높은 시간 이득을 보장하는 동영상 기반의 실시간 얼굴 영역 추출에 대한 알고리즘을 제시하고자 한다.

  • PDF

Detection on human Faces in Complex Scene by Use of a skin Color and of a Part of Face (복잡한 배경 화면에서 피부색과 얼굴 부분영역을 이용한 얼굴 추출)

  • 이옥경;김혜경;박연출;오해석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.571-573
    • /
    • 2000
  • 복잡한 이미지에서 얼굴 추출은 얼굴 영상처리 분야에서 기본적이면서도 배경이 복잡함으로 인해 많은 어려움이 따른다. 이 논문에서는 복잡한 화면 이미지에서 얼굴을 추출하기 위해 여러 가지 과정을 거친다. 다양한 피부색을 가진 얼굴에 대해 즉, 흑인과 황인, 백인 등을 모두 추출하기 위해 피부색 모델을 이용한다. 다양한 피부색에 대한 임계값(threshold)을 이용하여 피부색과 다른 영역을 구분하여 얼굴의 후보 데이터로 추출한다. 그 추출된 후보 데이터를 지역적 임계값(local threshold)을 이용하여 얼굴과 눈, 코, 입과 같은 세부사항에 분류한다. 분류된 부분이 즉 얼굴내에서 얼굴이 아닌 부분(눈, 코, 입 등)의 크기가 정규화 되어진 최소 크기보다 박을 경우 그 후보 데이터를 버리고, 그렇지 않을 경우, 즉 얼굴이 아닌 다른 부분의 크기가 정해진 크기보다 크거나 같을 경우 그 후보 데이터를 검출한다. 이 논문에 결과는 배경에서도 피부색과 얼굴의 부분영역을 이용하여 얼굴을 검출할 수 있다는 것을 보인다.

  • PDF

Real-Time Face Detection based on Skin-Color and Lighting Compensation (색공간에서 피부색과 조명보정을 이용한 실시간 얼굴 영역 검출)

  • Song Sang-Geun;Kim Soo-Hyung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.889-891
    • /
    • 2005
  • 본 논문에서는 실시간 영상을 대상으로 조명변화에 강인한 얼굴 영역 자동 검출 방법을 제안한다. 실시간 영상에서 가장 효율적이고 컴퓨터의 계산량을 줄일 수 있는 색상 정보를 이용하여 얼굴 영역을 추출함에 있어 색상 정보사용 시 단점인 외부 조명의 영향을 줄여주는 효과적인 조명 보정 방법을 제시하고 조명 보정에 의해 평활화된 영상에서 YCbCr 색상모델을 적용하여 얼굴 후보 영역을 검출하는 방법을 제시한다. 실험 결과 조명의 영향을 많이 받는 실시간 영상에서 적응적 조명 보정 방법으로 영상을 향상시킨 뒤 Cb, Cr 그리고 Y를 이용함으로서 기존의 방법보다. 얼굴 영역을 보다 정확하게 검출할 수 있음을 볼 수 있었다.

  • PDF

Audio-Visual Localization and Tracking of Sound Sources Using Kalman Filter (칼만 필터를 이용한 시청각 음원 정위 및 추적)

  • Song, Min-Gyu;Kim, Jin-Young;Na, Seung-You
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.519-525
    • /
    • 2007
  • With the high interest on robot technology and application, the research on artificial auditory systems for robot is very active. In this paper we discuss sound source localization and tracing based on audio-visual information. For video signals we use face detection based on skin color model. Also, binaural-based DOA is used as audio information. We integrate both informations using Kalman filter. The experimental results show that audio-visual person tracking Is useful, specially in the case that some informations are not observed.

Face Detection using Goal-Directed Attention Based on Integration of Top-Down Cue and Bottom-Up Saliency (상향식 돌출과 하향식 단서 결합 기반 목표 지향적 주의집중모델을 이용한 얼굴검출)

  • Lee, Yu-Bu;Lee, Suk-Han
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.329-331
    • /
    • 2012
  • 본 논문에서는 영상에서의 시각적 자극의 특징에 의한 돌출과 특정 대상에 관련한 단서들간의 상호작용에 기반하여 얼굴을 검출하는 주의집중모델을 제안한다. 제안하는 모델은 얼굴에 대한 하향식 다중 단서로 모양(shape), 피부색(skin color), 밝기(luminance), 거리에 대응하는 크기, 깊이 등을 사용하며 이들 단서들이 상향식 프로세스와의 상호작용을 통해 목표하는 얼굴을 검출하도록 유도하는 상향식/하향식 결합에 기반한다. 제안하는 방법은 크기 및 회전변화를 갖는 다수의 얼굴을 포함한 영상에서 얼굴검출을 수행함으로써 성능을 검증하였다.

Automatic Hand Tracking System using Skin Color Histogram (피부색 히스토그램 검출을 통해 향상된 자동 손 추적 시스템)

  • Kim, Beom-Joon;Shin, Byeong-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1477-1479
    • /
    • 2015
  • 기존의 연구와 같이 정확한 피부색 영역을 추출하기 위해 색상공간을 조절하는 방식은 조명이나 주변환경의 영향에 따라 잘못된 결과를 낼 수 있다. Camshift 알고리즘을 이용한 추적을 할 때에도 대상에게 맞춰진 피부색 히스토그램을 이용해서 추적하지 않으므로 범용성이 떨어진다. 이러한 문제점을 해결하기 위해 Camshift 알고리즘의 최초추적 윈도우를 결정하고 히스토그램을 결정하여손 피부색 추적성능을 향상시켰다. 보편적인 피부색 필터를 이용하여 인체 전경을 추출하고, haar like feature detection (특징검출)을 이용하여 손 영역을 검색한다. 이후 피부색 필터를 통해 이진화 된 이미지를 이용해 원 영상을 마스킹 한 후 사용자 고유의 피부색의 히스토그램을 결정한다. 이 방법으로 얻은 히스토그램을 Camshift알고리즘에 적용하면 기존방식 으로 생성한 히스토그램을 사용할 때보다 좋은 추적 성능을 보인다.

Human Eye Detection using Skin Color and Moments (피부색과 모멘트를 이용한 눈 영역 검출)

  • Seo, Duck-Won;Yun, Kug-Jin;Kim, Dae-Jung;Kwak, Hoon-Sung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04a
    • /
    • pp.143-146
    • /
    • 2001
  • 본 논문에서는 칼라 영상으로부터 피부색 정보 및 모멘트를 이용하여 눈 영역 및 얼굴 영역을 검출하는 알고리즘을 제안한다. 제안한 알고리즘은 눈 영역을 추출함으로써 보다 정확한 얼굴 영역을 검출할 수 있다. 이를 위해 먼저 입력된 칼라 영상의 피부색 정보를 기반으로 추출한 영역으로부터 레이블 영역의 면적과 크기 정보를 이용해 1차, 2차 얼굴 후보 영역을 선택하고 선택된 얼굴 후보 영역간의 기울기 모멘트를 계산하여 3차 얼굴 후보 영역을 추출한다. 또한 추출한 3차 후보 영역으로부터 레이블 영역의 크기 및 구조적 관계를 고려하여 영역 내에서의 눈의 위치를 검출한다. 따라서 제안한 방법은 눈의 기울기 관계를 이용함으로써 얼굴의 크기와 얼굴이 좌우로 기울어진 영상에 대하여 강인한 얼굴 검출 능력을 보인다.

  • PDF

Face Detection using Skin Color Information and Parallel Processing Method on Multi-Core (멀티코어에서 피부색상 정보와 병렬처리 방법을 이용한 얼굴 검출)

  • Kim, Hong-Hee;Lee, Jae-Heung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.219-222
    • /
    • 2012
  • 최근 얼굴검출에 관한 연구는 FPGA를 통한 H/W설계부터 DSP, GPU, ARM Core에 효율적인 S/W 설계까지 다양하게 연구되고 있다. 본 연구에서는 Multi-Core에 효과적인 얼굴검출 방법을 제안한다. 피부색을 통한 얼굴 후보를 추출하고 그 외의 배경 이미지는 삭제하여 연산처리를 빠르게 하였다. Viola-Jones가 제안한 얼굴검출 알고리즘을 POSIX Thread를 사용하여 병렬 처리하였고 그 성능을 단일 코어와 멀티코어에서 측정하였다. 단일 코어에서는 성능의 향상이 없었으나 멀티코어에서는 약 1.8배 속도가 향상되었고 검출 성공률은 기존과 동일하였다.

Hand Motion Gesture Recognition at A Distance with Skin-color Detection and Feature Points Tracking (피부색 검출 및 특징점 추적을 통한 원거리 손 모션 제스처 인식)

  • Yun, Jong-Hyun;Kim, Sung-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.594-596
    • /
    • 2012
  • 본 논문에서는 손 모션에 대하여 피부색 검출을 기반으로 전역적인 모션을 추적하고 모션 벡터를 생성하여 제스처를 인식하는 방법을 제안한다. 추적을 위하여 Shi-Tomasi 특징점 검출 방법과 Lucas-Kanade 옵티컬 플로우 추정 방법을 사용한다. 손 모션을 추적하는 경우 손의 모양이 다양하게 변화하므로 초기에 검출된 특징점을 계속적으로 추적하는 일반적인 방법으로는 손의 모션을 제대로 추적할 수 없다. 이에 본 논문에서는 프레임마다 새로운 특징점을 검출한 후 옵티컬 플로우를 추정하고 이상치(outlier)를 제거하여 손 모양의 변화에도 추적을 통한 모션 벡터 생성이 가능하도록 한다. 모션 벡터들로 인공 신경망을 사용한 판별 과정을 수행하여 최종적으로 손 모션 제스처에 대한 인식이 가능하도록 한다.