• Title/Summary/Keyword: Skin-Color Detection

Search Result 291, Processing Time 0.024 seconds

Game Interface using Robust Skin Color Detection (조명 변화에 강건한 피부색 검출을 사용한 게 임 인터페이스)

  • 장상수;박혜선;김항준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.736-738
    • /
    • 2004
  • 최근 사용자의 제스처를 이용한 게임 시스템에 대한 연구가 많은 관심을 받고 있다. 사용자의 얼굴 및 손의 움직임을 이용하여 게임을 제어하기 위해서는 복잡한 배경 및 조명에 강건한 얼굴 및 손 영역의 추출이 필수적이다. 본 논문에서는 조명 변화에 강건한 피부색 검출을 이용한 게임 인터페이스를 제안한다. 이를 위해 제안된 시스템은 다음의 두 단계로부터 얼굴 및 손 영역을 추출한다. 먼저, 피부색과 유사한 물건들을 제거하기 위해 배경 영상과 현재 영상의 차영상으로부터 전경물체를 추출한다. 그 다음, 조명에 의한 깜박임이나 잡음을 줄이기 위해서 SCT 알고리즘을 이용하여 전경물체 영역 안에서 피부색 영역만을 정확하게 검출한다. 추출된 얼굴 및 손의 움직임으로부터 얻어지는 제스처는 은닉마르코프 모델을 사용하여 인식된다. 복잡한 환경에서 실험한 결과, 제안된 시스템은 정확한 피부색 영역 검출을 제공하고 이를 통한 보다 정확한 인식률을 제공할 수 있다는 것이 증명되었다.

  • PDF

An Eye Location based Head Posture Recognition Method and Its Application in Mouse Operation

  • Chen, Zhe;Yang, Bingbing;Yin, Fuliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.1087-1104
    • /
    • 2015
  • An eye location based head posture recognition method is proposed in this paper. First, face is detected using skin color method, and eyebrow and eye areas are located based on gray gradient in face. Next, pupil circles are determined using edge detection circle method. Finally, head postures are recognized based on eye location information. The proposed method has high recognition precision and is robust for facial expressions and different head postures, and can be used in mouse operation. The experimental results reveal the validity of proposed method.

WFMM Neural Networks Based Skin Color Filter for Face Detection (얼굴패턴 검출 문제에서 WFMM 신경망 기반의 피부색 검출 기법)

  • Cho Il-Gook;Kim Ho-Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.299-302
    • /
    • 2006
  • 본 논문에서는 다중필터와 복합형 신경망으로 구성된 얼굴 검출 시스템과 WFMM 신경망을 이용한 피부색 검출기법을 소개한다. 전처리 단계에 해당하는 다중필터는 대상 영역의 수를 감소 시켜 시스템의 속도를 개선한다. 다중필터에 속한 색상필터는 총 11 가지의 색상 공간에서 피부색의 특징 값을 추출하여 학습 데이터로 사용하며, 이 학습 데이터에 의해 생성된 하이퍼 박스를 통해 피부색을 분류한다. 또한 WFMM 신경망의 연관도 요소 특성을 이용하여 각 색상 공간의 상대적 중요도를 분석하여 피부색 검출에 유용한 색상 공간을 분석하고 추출 한다. 얼굴패턴 검출을 위한 복합형 신경망은 첫 단계에서 가보 변환을 사용하는 CNN 을 통해 특징 지도를 생성하고, WFMM 신경망으로 최종 얼굴패턴을 검증한다.

  • PDF

Multiple face detection and tracking using active camera and skin color (액티브 카메라와 피부색상에 의한 다중 얼굴 검출 및 추적)

  • 김광희;이배호
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.377-380
    • /
    • 2001
  • 본 논문에서는 실내에서 액티브 카메라를 사용하여 다중 인물의 얼굴의 위치를 검출하고. 추적할 수 있으며 조명과 배경 등의 영향에 강인한 추적 알고리즘을 제시하고자 한다. 알고리즘은 얼굴영역 검출, 추적의 2단계로 구성되며, 빠르고 효율적인 얼굴영역 검출은 추적 알고리즘의 성능향상으로 이어지므로, 이를 위해 독특한 색상영역 분포를 갖는 피부 색상 특징을 이용하였다. 표본영상에서 추출된 피부색상 픽셀들을 바탕으로 YCbCr 색상계를 사용하여 얼굴 색상모델을 구축한 후, Gaussian 함수를 사용하여 입력 영상의 픽셀과 얼굴색상모델과의 유사도를 결정하였다. 최종 얼굴 영역은 추출된 영역에 대한 얼굴의 타원특징, 해부학적 특징을 이용하여 결정된다. 추적은 추출된 얼굴영역과 temporal Gaussian 필터를 적용한 움직임 추정을 통한 움직임 검출의 조합으로 이루어진다. 또한, 예측버퍼의 사용으로 탐색영역의 축소로 인한 계산량 감소와 처리 속도의 증가시켰으며, pan/tilt가 가능한 카메라를 사용하여 상호 피드백이 가능하도록 하였다. 제시된 알고리즘은 PC 상에서 시뮬레이션되었으며, 좋은 결과를 얻을 수 있었다.

  • PDF

Realtime Face Recognition using the Skin Color and Information of Face (얼굴의 피부색과 정보를 이용한 실시간 얼굴 인식)

  • Lee, Min-Ho;Hwang, Dae-Dong;Choi, Hyung-Il
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.173-176
    • /
    • 2009
  • 본 논문에서는 피부색 정보와 눈, 입의 위치를 찾아 실시간으로 얼굴을 인식하는 랩을 제안한다. 먼저 노이즈를 제거하여 얼굴 후보 영역을 지정한다. 지정된 얼굴 후보 영역에서 눈과 입을 찾고, 찾은 눈과 입 사이의 영역에서 에지를 탐색하여 코의 존재 유무를 검증하고 이를 바탕으로 얼굴인지 판단하는 절차를 따른다. 제안한 기법은 피부색 검출을 위해 YCbCr 을 이용하여 피부 영역을 찾고 지정한 피부 영역에서 노이즈를 제거한 후, Eye Map의 EyeMapC 연산을 통해 눈을 Lip Map을 통해 입을 찾는다. 찾아낸 눈과 입의 사이의 영역에서 Canny Edge 연산을 수행하여 코의 존재 유무를 판단하여 최종적인 얼굴 영역을 판별하는 방법을 제안한다.

  • PDF

Harmful Pornographic Detection Algorithm Using High and Low Quality Image Division (고.저화질 영상 분류를 이용한 유해 영상 검출)

  • Chung, Myoung-Beom;Kim, Jae-Kyung;Jang, Dae-Sik;Ko, Il-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.223-226
    • /
    • 2009
  • 유해 영상 검출은 유해 동영상을 내용 기반으로 검색하고 차단하기 위한 방법의 하나로써, 유해 동영상 추적 시스템의 전체 성능을 좌우하는 중요한 기술이다. 기존의 유해 영상 검출은 웹 사이트 내에 음란 콘텐츠를 추출함으로 유해 사이트를 차단하는데 사용되었으며, 주로 RGB 비율, Histogram 등을 이용한 Skin color와 Edge를 추적한 Texture를 기반으로 유해 영상을 검출하였다. 그러나 기존 방식은 UCC 유해 동영상과 같이 저화질 영상에서의 유해 여부를 판단하기에는 정확성이 낮다. 따라서 본 논문에서는 영상 크기에 따른 고/저화질 분류를 이용하여 동영상에서 보다 효과적인 유해 영상 검출할 수 있는 방법을 제안한다. 제안 방법의 성능을 확인하기 위해 고/저화질 분류 사용의 유/무에 따른 검출 실험을 하였으며, 그 결과 분류를 방법이 기존 방법보다 12%의 성능이 향상됨을 알 수 있었다.

  • PDF

Face Detection based on Skin Color and Deformable Model (스킨 컬러와 변형모델에 기반한 얼굴검출)

  • 김정기;전준철;박구락
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.343-345
    • /
    • 2003
  • 본 논문에서는 색상 정보와 변형 모델을 이용한 얼굴 영역 및 얼굴의 특징 영역의 자동 검출 방법을 제시한다. 영상으로부터 획득할 수 있는 정보 중 가장 빠르고 쉽게 얻을 수 있는 정보가 색상 정보이며, 색상정보는 사물을 판단함에 있어서 가장 효율적이면서 컴퓨터의 계산량을 줄일 수 있다는 장점을 갖고 있기 때문에 얼굴 영역 검출 방법으로 많이 이용되고 있다. 본 연구에서는 얼굴영역 및 얼굴 특성 추출함에 있어 컬러모델 사용 시 외부 조명의 영향을 줄여주는 조명 보정 방법을 제시하고, 조명 보정에 의해 평활화된 YCbCr 색상모델에 적용하여 각 성분 특성을 고려한 얼굴영역 및 얼굴의 특성 영역에 해당하는 후보 영역을 검출하는 방법을 제시한다. 검출된 얼굴후보 영역 및 특성 영역은 가변 모델인 동적 윤곽선 모델의 초기값으로 자동 적용되어 윤곽선 모델 적용시 문제점가운데 하나인 초기값 설정문제를 해결함과 동시에 얼굴 및 얼굴 특징 정보의 정확한 윤곽선을 추출하는데 사용된다. 실험 결과 제시된 방법을 적용한 결과 빠르고 효과적으로 얼굴 및 특성 영역을 검출 할 수 있음을 입증 할 수 있었다.

  • PDF

A Facial Region Detection Using the Skin-Color Segmentation and Sobel Mask (피부색 분할과 소벨 마스크를 이용한 얼굴 영역 검출)

  • 유창연;권동진;장언동;김영길;곽내정;안재형
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05d
    • /
    • pp.553-558
    • /
    • 2002
  • 본 논문에서는 컬러 영상에서 피부색 분할과 소벨 마스크를 이용한 얼굴 영역 검출 알고리즘을 제안한다. 제안된 알고리즘은 YCbCr색공간에서 Cb와 Cr성분을 이용하여 피부색 분할을 한 후에 형태학적 필터링과 레이블링을 통해 얼굴 후보 영역을 분리한다. 분리된 각 후보 영역에 대해 휘도 성분 Y에서 소벨 마스크의 수직 연산자를 적용한 후에 수평 투영을 통해 나타난 최대값을 눈의 위치로 검출해낸다. 비슷하게 얼굴의 지형적인 특징과 소벨 마스크의 수평 연산자를 적용하여 계산된 수평 투영의 최대값에 따라 턱 부분을 검출한다. 컴퓨터 시뮬레이션 결과는 제안된 방법이 기존의 방법보다 얼굴 영역을 정확하게 분리할 수 있음을 보인다.

  • PDF

Emotional Human Body Recognition by Using Extraction of Human Body from Image (인간의 움직임 추출을 이용한 감정적인 행동 인식 시스템 개발)

  • Song, Min-Kook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.214-216
    • /
    • 2006
  • Expressive face and human body gestures are among the main non-verbal communication channels in human-human interaction. Understanding human emotions through body gesture is one of the necessary skills both for humans and also for the computers to interact with their human counterparts. Gesture analysis is consisted of several processes such as detecting of hand, extracting feature, and recognizing emotions. Skin color information for tracking hand gesture is obtained from face detection region. We have revealed relationships between paricular body movements and specific emotions by using HMM(Hidden Markov Model) classifier. Performance evaluation of emotional human body recognition has experimented.

  • PDF

Security Verification of Video Telephony System Implemented on the DM6446 DaVinci Processor

  • Ghimire, Deepak;Kim, Joon-Cheol;Lee, Joon-Whoan
    • International Journal of Contents
    • /
    • v.8 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • In this paper we propose a method for verifying video in a video telephony system implemented in DM6446 DaVinci Processor. Each frame is categorized either error free frame or error frame depending on the predefined criteria. Human face is chosen as a basic means for authenticating the video frame. Skin color based algorithm is implemented for detecting the face in the video frame. The video frame is classified as error free frame if there is single face object with clear view of facial features (eyes, nose, mouth etc.) and the background of the image frame is not different then the predefined background, otherwise it will be classified as error frame. We also implemented the image histogram based NCC (Normalized Cross Correlation) comparison for video verification to speed up the system. The experimental result shows that the system is able to classify frames with 90.83% of accuracy.