• Title/Summary/Keyword: Skin heat effect

Search Result 175, Processing Time 0.024 seconds

Design of High Frequency Heating Power Supply System Using Peck Current Mode Control (피크전류모드 제어를 적용한 고주파 심부발열 전원장치 설계)

  • Xu, Guo-Cheng;Zheng, Tao;Piao, Sheng-Xu;Qiu, Wei-Jing;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.61-65
    • /
    • 2017
  • In this paper a prototype of high frequency heating power supply system based on the high frequency heating principle is designed to take the place of acupuncture, moxibustion, warm dressing treatment and some other traditional physical therapy methods. Which possess the advantages of low cost, convenient, easy operation and good effect. The high frequency heating power supply can generate a pulse voltage of more than 1KV with 300KHz switching frequency to heat the patient's skin. The skin temperature can reach to $41{\sim}42^{\circ}C$. The peak current control method is used to maintain the skin temperature in the designed range. The design of the main circuit is based on the flyback converter topology. An easier and practical design method is proposed in this paper. The power supply system prototype is verified to be stable and reliable by both the simulation and experimental results.

Effect of Pulse Magnetic Field Stimulus on Blood Flow using Digital Infrared Thermal Imaging (체열진단을 통한 펄스자기장 자극기의 혈류개선효과 고찰)

  • Lee, Hyun-Sook
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.180-184
    • /
    • 2011
  • The changes in the blood flow in the peripheral vascular system under strong pulsed magnetic fields (pMF) were studied by digital infrared thermal imaging (DITI). After pMF stimulus temperatures in stimulated area were commonly increased in both groups of age and gender. In order to reduce heat generated from coil in pMF stimulus system plastic moldings were fabricated, so that certain distance was kept between stimulus system and the skin and to prevent direct contact to the skin. It is believed that skin temperature is increased by internal electromagnetic energy stimulated the peripheral vascular system by non-contact method.

The Effect of Cream containing Acetyl hexapeptide upon the Facial Skin (Acetyl hexapeptide 함유 크림이 안면 피부 변화에 미치는 영향)

  • Choi, Jeong-Yun;Oh, Sung-Cheon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.120-129
    • /
    • 2014
  • The structure and physiological function of human skin continuously weaken due to growing older. The reasons of aging from external conditions are long term exposure to sun, wind, heat, cigarette smoke, and etc. This also palmitoyl oligopeptide or ceramide oligopeptide are known asc ingredient stimulating collagens and have the effect of reproducing the upper level of skin. Acetyl hexapeptide is an ingredient that makes the skin and muscle suppler and reduces wrinkles. It is a major high function beauty ingredient that substitutes botox. After dividing 7%, 14%, and 20% Acetyl hexapeptide experimental groups as groups A, B, and C the control group and experiment groups' change of wrinkles, hair follicles, moisture content, and dead skin cells was analyzed. According to the results, Acetyl hexapeptide seems to affect wrinkles, hair follicles and moisture content contrasting to the control group. Experimental groups and control group showed similar change in dead skin cells. In contrast to the control group satisfaction of examines was affected in wrinkles, hair follicles and moisture but removing dead skin cells had similar result in experimental groups and control group.

Analysis of Output Characteristics and Frequency Variation Design for Personal High Frequency Electrical Stimulation Medical Devices (개인용 고주파 전기자극기의 주파수 가변 설계 및 출력 특성의 분석)

  • Jang, Kyeong-Wook;Leem, Ji-Hyun;Baek, Seung-Myoung;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.1
    • /
    • pp.25-30
    • /
    • 2016
  • In this paper, personal electrical stimulation medcial devices using bioelectrical stimulating was developed. Therapy effect of RET(resistive electric transfer) was more effective than CET(capacitive electric transfer), but CET was adopted because of safety issue. Then, the optimum parameters that may be effective in thin skin or facial wrinkles was set. For example, the frequency of the pulse voltage for stimulation is 1.8[MHz], burst frequency is 7[kHz] or 400[Hz], the development of devices was to have ON/OFF control and frequency control. When burst frequency was adjusted 7[kHz], heat was generated in the electrode. The case of 400[Hz] the heat was little generated. The microcontroller ATmega128-based experimental results show that the proposed personal high frequency electrical stimulation devices can be applied to medical equipment using therapy effect successfully.

The Effect of an Optical Clearing Agent on Tissue Prior to 1064-nm Laser Therapy

  • Youn, Jong-In
    • Medical Lasers
    • /
    • v.10 no.3
    • /
    • pp.146-152
    • /
    • 2021
  • Background and Objectives Although lasers have been widely applied in tissue treatment, the light penetration depth in tissues is limited by the tissue turbidity and affected by its absorption and scattering characteristics. This study investigated the effect of using an optical clearing agent (OCA) on tissue to improve the therapeutic effect of 1064 nm wavelength laser light by reducing the heat generated on the skin surface and increasing the penetration depth. Materials and Methods A diode laser (λ = 1064 nm) was applied to a porcine specimen with and without OCA to investigate the penetration depth of the laser light and temperature distribution. A numerical simulation using the finite element method was performed to investigate the temperature distribution of the specimen compared to ex-vivo experiments using a thermocouple and double-integrating sphere to measure the temperature profile and optical properties of the tissue, respectively. Results Simulation results showed a decrease in tissue surface temperature with increased penetration depth when the OCA was applied. Furthermore, both absorption and scattering coefficients decreased with the application of OCA. In ex-vivo experiments, temperatures decreased for the tissue surface and the fat layer with the OCA, but not for the muscle layer. Conclusion The use of an OCA may be helpful for reducing surface heat generation and enhance the light penetration depth in various near-infrared laser treatments.

Effect of Process Parameters of P/M and Induction Heating on the Cell Morphology and Mechanical Properties of 6061 Aluminum Alloy (P/M법과 유도가열 공정변수가 6061 알루미늄 합금의 미세기공과 기계적 성질에 미치는 영향)

  • 강충길;윤성원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.222-229
    • /
    • 2003
  • The purpose of this study is to evaluate the mechanical properties of 6061 Al foams, which were fabricated by P/M and multi-step induction heating method, and to build the database, which is needed for computer aided modeling or foam components design. Aluminium foams, consisting of solid aluminium and large quantities of porosities, is widely used in automotive, aerospace, naval as well as functional applications because of its high stiffness at very low density, high impact energy absorption, heat and fire resistance, and greater thermal stability than any organic material. In this study, 6061 Al foams were fabricated for variation of fraction of porosities (%) according to porosities (%)-final heating temperature ( $T_{a3}$) curves. Mechanical properties such as compressive strength, energy absorption capacity, and efficiency were investigated to evaluate the feasibility of foams as crash energy absorbing components. Moreover, effect of the surface skin thickness on plateau stress and strain sensitivity of the 6061 Al foams with low porosities (%) were studied.d.

An experimental study on the in-process measurement of case depth for LASER surface hardening process (레이저 표면경화 공정에서 경화층깊이의 실시간 측정을 위한 실험적 연구)

  • Woo, H.G.;Park, Y.J.;Han, Y.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.66-75
    • /
    • 1993
  • This paper proposes a monitoring method for nondestructive and in-process measurement of the case depth in LASER surface heat treatment process. The method is essentially an eddy-current method, and measures sensing coil's electrical impedance which varies with the changes of the material microstructure due to hardening. To investigate te validity of the proposed method a series of experiments were performed for various hardning depths. The results show that the relationship between the eddy- current sensor output and the changes in case depth is almost linear. This indicates that the eddy-current measuring method can be used as one of the possible monitoring method for mesauring the hardened depth in LASER heat treatment processes.

  • PDF

Numerical Simulation on Thermal Performence of Passive Ventilation Skin (패시브환기외피의 열성능 수치시뮬레이션)

  • Lee, Tae-Cheol;Son, Yu-Nam;Yoon, Seong-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.144-149
    • /
    • 2011
  • This study aims to evaluate performance of ventilation and thermal about breathing wall by flowing air to indoor on appropriate conditions that is effective aperture area in the Central region(20, 50, $80cm^2/m^2$). The result is as follows : 1) Sectional temperature distribution of inflow and outflow out under the constant ventilation was reviewed. In the case of inflow, outside temperature increase effect was confirmed. 2) The more differences of temperature between outdoor and indraft of air was high, the more heat recovery was high.

  • PDF

An Improved Mechanistic Critical Heat Flux Model for Subcooled Flow Boiling

  • Young Min Kwon;Soon Heung Chang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.552-557
    • /
    • 1997
  • Based on the bubble coalescence adjacent to the heated wall as a flow structure for CHF condition, Chang and Lee developed a mechanistic critical heat flux (CHF) model for subcooled flow boiling. In this paper, improvements of Chang-Lee model are implemented with more solid theoretical bases for subcooled and low-quality flow boiling in tubes. Nedderman-Shearer's equations for the skin friction factor and universal velocity profile models are employed. Slip effect of movable bubbly layer is implemented to improve the predictability of low mass flow. Also, mechanistic subcooled flow boiling model is used to predict the flow quality and void fraction. The performance of the present model is verified using the KAIST CHF database of water in uniformly heated tubes. It is found that the present model can give a satisfactory agreement with experimental data within less than 9% RMS error.

  • PDF

Rigid-thermoviscoplastic finite element analysis of an electric upsetting process (전기 업셋팅 공정의 강열점소성 유한요소해석)

  • Lee, M.C.;Choi, I.S.;Kim, H.T.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.177-182
    • /
    • 2007
  • We simulated an electric upsetting process by the rigid-thermoviscoplastic finite element method. Several engineering assumptions were made to calculate the heat generation due to the electric resistance. The skin effect of the bar was taken into account for the heat generation. The approach was applied to simulate an artificial electric upsetting process for the exhaust valve of the ship engine.

  • PDF