• 제목/요약/키워드: Skin Sparing Effect

검색결과 13건 처리시간 0.017초

유방암 방사선치료시 조직등가보상체와의 비교를 통한 Brass mesh bolus의 유용성 평가 (Comparison and validation of Brass mesh bolus using tissue equivalent bolus in the breast cancer radiotherapy)

  • 봉주연;김경태;전미진;하진숙;신동봉;김세준;김종대
    • 대한방사선치료학회지
    • /
    • 제29권1호
    • /
    • pp.93-101
    • /
    • 2017
  • 목 적: 유방암 방사선 치료에서 조직등가보상체의 단점을 해결하기 위해 황동그물망보상체(Brass mesh bolus)가 최근 연구되고 있다. 본 연구의 목적은 국내에 처음 소개되는 황동그물망보상체의 안정성을 조사하고, 표면선량을 평가하고자 하였다. 대상 및 방법: 조직등가보상체 5 mm와 가장 비슷한 황동그물망보상의 두께를 확인하기 위해 표면선량을 측정하였다. 6 MV 선형가속기와 광자극형광선량계(optically stimulated luminescent dosimeter, OSLD)를 사용하였다. 흉곽팬텀을 이용한 2문 대항접선조사를 황동그물망보상체와 조직등가보상체의 비교를 통하여 연구에 적용하였다. 결 과: 표면선량 측정을 기반으로 조직등가보상체 5 mm와 가장 유사한 두께는 황동그물망보상체를 두 겹에 해당되는 3 mm였고, 평균 상대오차율은 0.38 %였다. 흉곽팬텀을 사용한 황동그물망보상체의 표면선량은 조직등가보상체에 비해 약 1.069배 증가하였다. 결 론: 본 실험에서 황동그물망보상체는 기존 조직등가보상체 선량균등도가 향상된 것으로 확인되었다. 실험을 바탕으로 황동그물망보상체가 기본 조직등가보상체를 대체 가능 할 것으로 사료된다. 하지만 다양한 임상적 평가가 필요할 것으로 사료된다.

  • PDF

Monte Carlo Based Planning System for a Beam Spoiler

  • 강세권;조병철;박희철;배훈식
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2003년도 제27회 추계학술대회
    • /
    • pp.56-56
    • /
    • 2003
  • For the treatment of superficial tumors like squamous cell carcinoma of the head and neck, 6 MV photon beam is not appropriate and a spoiler is widely used to increase dose in the buildup region, while preserving the skin sparing effect. However, commercially available treatment planning systems assume a normal unspoiled beam, thereby cannot predict the buildup dose with spoiler accurately. We aimed to implement a Monte Carlo (MC) based planning system to apply it to the radiation treatment of head and neck. Lucite with thickness of 10-mm was used for the beam spoiler with Siemens Primus 6 MV photon beam. BEAM/DOSXYZ MC system was employed to model the linac and the spoiler. To verify the calculation accuracy of MC simulations, the percent depth doses (PDDs) and profiles with and without spoiler were measured using a parallel-plate chamber. For the MC based planning, we adopted a hybrid interface system between Pinnacle (Philips, USA) and BEAM/DOSXYZ to support treatment parameters of Siemens linac and the spoiler. The measurements of PDDs and profiles agreed with the corresponding MC simulations within 2% (lSD), which demonstrate the reliability of our MC simulations. The spoiler generated electrons make a contribution to the absorbed dose up to depth of 2cm, which shows that the dominant source of increased dose from spoiler system is the contaminating electrons created by the spoiler. The whole procedures necessary for MC based treatment planning were performed seamlessly between Pinnacle and BEAM/DOSXYZ system. This ability helps to increase the clinical efficiency of the spoiler technique. In conclusion, we implemented a MC based treatment planning system for a 6 MV photon beam with a spoiler. We demonstrate sophisticated MC technique makes it possible to predict dose distributions around buildup region accurately.

  • PDF

Non-ablative Fractional Thulium Laser Irradiation Suppresses Early Tumor Growth

  • Yoo, Su Woong;Park, Hee-Jin;Oh, Gyungseok;Hwang, Soonjoo;Yun, Misun;Wang, Taejun;Seo, Young-Seok;Min, Jung-Joon;Kim, Ki Hean;Kim, Eung-Sam;Kim, Young L.;Chung, Euiheon
    • Current Optics and Photonics
    • /
    • 제1권1호
    • /
    • pp.51-59
    • /
    • 2017
  • In addition to its typical use for skin rejuvenation, fractional laser irradiation of early cancerous lesions may reduce the risk of tumor development as a byproduct of wound healing in the stroma after the controlled injury. While fractional ablative lasers are commonly used for cosmetic/aesthetic purposes (e.g., photorejuvenation, hair removal, and scar reduction), we propose a novel use of such laser treatments as a stromal treatment to delay tumorigenesis and suppress carcinogenesis. In this study, we found that non-ablative fractional laser (NAFL) irradiation may have a possible suppressive effect on early tumor growth in syngeneic mouse tumor models. We included two syngeneic mouse tumor models in irradiation groups and control groups. In the irradiation group, a thulium fiber based NAFL at 1927 nm was used to irradiate the skin area including the tumor injection region with 70 mJ/spot, while no laser irradiation was applied to the control group. Numerical simulation with the same experimental condition showed that thermal damage was confined only to the irradiation spots, sparing the adjacent tissue area. The irradiation groups of both tumor models showed smaller tumor volumes than the control group at an early tumor growth stage. We also detected elevated inflammatory cytokine levels a day after the NAFL irradiation. NAFL treatment of the stromal tissue could potentially be an alternative anticancer therapeutic modality for early tumorigenesis in a minimally invasive manner.