• Title/Summary/Keyword: Skin Permeation

Search Result 242, Processing Time 0.028 seconds

Evaluation of Physico-chemical Properties of Acrylic Resin Hydrogel and their Application to Transdermal Delivery System

  • Chung, Uoo-Tae;Choi, Seung-Man;Kang, Kee-Long;Kim, Nak-Seo;Chung, Youn-Bok
    • Archives of Pharmacal Research
    • /
    • v.18 no.4
    • /
    • pp.224-230
    • /
    • 1995
  • Recently, many attempts have been made to use hydrogels of various polymers as delivery systems of various drugs and bioactive materials to prolong and control their phamacological activities. In this study, we have evaluated the physico-chemical properties of methacrylic acid-methyacrylic acid methyl ester copolymer 9Eudispert mv)m a acrylic resin hydorgel, and its application to transdermal delivery system. In the dissolution tests, the release rate of salicylic acid (SA) and sodium salicylate (SOd. SA) were faster than lidocain (LD) and lidocain-HCl(LD-HCl). As the concentration of Eudispert mv polymer increased, the extensibility of Eudispert mu hydrogel decreased, whereas the swelling ratio increased. The more NaOH and polymer concentration increased, the more osmotic pressure linearly increased. The skin permeation of Sod. SA, an acidic model drug, was remarkably enhanced by Eudispert mv hydrogel. All fatty acids, except for Sod. glycolate, dramatically increased the skin permeation flux in Eudispert mu hydrogel containing LD-Hcl, a basic model drug. Consequently, it is suggested that Eudispert mv hydrogel may be used as potential transdermal delivery vehicle.

  • PDF

Formulation and Evaluation of Controlled Release Patch Containing Naproxen (나프록센 함유 방출제어형 패취의 제제설계 및 평가)

  • Rhee, Gye-Ju;Hong, Seok-Cheon;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.4
    • /
    • pp.343-348
    • /
    • 1999
  • The purpose of this study is to prepare the controlled release adhesive patch containing naproxen. Pressuresensitive adhesive (PSA)-type patch was fabricated by casting of polyisobutylene (PIE.) and mineral oil in toluene. Membrane-controlled release (MCR)-type patch was prepared by the attachment of the controlled release membrane on the PSAtype patch. The membrane was mainly composed of Eudragit, polyethylene glycol(PEG) and glycerin. The drug release profile and skin permeation test with various patches were evaluated in vitro. The release of naproxen from PIE-based PSAtype patch with various loading doses fitted Higuchi's diffusion equation. However, the permeation of naproxen through hairless mouse skin from PSA-type patch followed zero-order kinetics. In MCR-type patch, thickness of controlled release membrane affected on the drug release rate highly. In the composition of membrane, the release rate was decreased as the ratio of Eudragit increased. The drug release from the MCR-type patch followed zero order kinetics. The permeation of naproxen through hairless mouse skin from MCR-type patch showed lag time for the intial release period and didn't fit the zero-order kinetics

  • PDF

DEVELOPMENT OF POLYETHOXYLATED RETINAMIDE AS AN ANTl-AGINC AGENT

  • Song, Young-Sook;Chung, Bong-Yul;Chang, Min-Youl;Park, Mun-Eok;Lee, Sung-Jun;Cho, Wan-Goo;Kang, Seh-Hoon
    • Proceedings of the SCSK Conference
    • /
    • 1999.10a
    • /
    • pp.145-154
    • /
    • 1999
  • A novel retinol derivative, polyethoxylated retinamide (Medimin A) was synthesized, as an anti-aging agent. Collagen synthesis, skin permeation, stability, and toxicity of Medimin A were evaluated and compared with those of retinol and retinyl palmitate. In vitro collagen synthesis was evaluated by quantitative assay of [$^3H$]-proline incorporation into collagenase sensitive protein in fibroblast cultures. For in vitro skin permeation experiments, Franz diffusion cells (effective diffusion area: $1, 766{\;}\textrm{cm}^2$) and the excised skin of female hairless mouse aged 8 weeks were used The stabilities of retlnoids were evaluated at two different temperature ($25{\;}^{\circ}C$ and $40{\;}^{\circ}C$) and under UV in solubilized state and in OW emulsion. To estimate the safety, acute oral toxicity, acute dermal toxicity, primary skin irritation, acute eye irritation and human patch test were performed The effect of Medimin A on collagen synthesis was similar to that of retinol. The skin permeability of Medimin A was higher than those of retinol and retinyl palmitate. The Medimin A was more stable than retinol and retinyl palmitate. Medimin A was nontoxic in various toxicological tests. These results suggest that Medimin A would be a good anti-aging agent for enhancing bioavailability and stability.

  • PDF

Development of Transdermal Drug Delivery System for the Combination of Physostigmine and Procyclidine

  • Park, Soon-Cheol;Choi, Hoo-Kyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.3
    • /
    • pp.181-184
    • /
    • 2001
  • The purpose of this study was to develop transdermal drug delivery system (TDDS) for the combination of physostigmine and procyclidine. The effects of various pressure sensitive adhesives (PSA) on the percutaneous absorption of procyclidine across hairless mouse skin were evaluated to select an appropriate PSA. In addition, the influences of various vehicles on the percutaneous absorption of procyclidine from PSA matrix across hairless mouse skin were evaluated using flow-through diffusion cell system at $37^{\circ}C$. Physostigmine did not have any influence on the permeation rate of procyclidine. The flux of procyclidine was the highest in silicone and PIB and was relatively lower in SIS, Acryl, and SBS adhesive matrices, however, their use was limited by the crystallization of the drug in the matrix. Among acrylic adhesives, the permeability of procyclidine was the highest from poly (ethylene oxide) grafted acrylic adhesive. Some enhancers show different enhancing effect depending on the drug, however, many of the tested enhancers showed enhancing effect for the permeation of both procyclidine and physostigmine to some extent. $Crovol^{\circledR}$ EP 40 showed the highest enhancing effect on the permeation of both compounds. The size of TDDS to provide required permeation rate was estimated to be $35\;cm^2$ based on available information.

  • PDF

Transdermal Delivery System of Triamcinolone Acetonide from a Gel Using Phonophoresis

  • Yang Jae-Heon;Kim Dae-Keun;Yun Mi-Young;Kim Tae-Youl;Shin Sang-Chul
    • Archives of Pharmacal Research
    • /
    • v.29 no.5
    • /
    • pp.412-417
    • /
    • 2006
  • Triamcinolone acetonide (TA) is a corticosteroid that is used in the systemic and topical treatment of many inflammatory diseases. In this study, a phonophoretic drug delivery system was designed to enhance the TA permeability and the influence of ultrasound was examined. In order to establish the transdermal delivery system for TA, a hydrophilic carbopol gel containing TA was prepared after adopting phonophoresis. A permeation study through mouse skin was performed at $37^{\circ}C$ using a Franz diffusion cell, and the ultrasound treatment was carried out for 10 h. The level of TA permeation through the skin was evaluated under various ultrasound conditions including the frequency (1.0, 3.0 MHz), intensity (1.0, $2.5W/cm^2 $), and duty cycle (continuous, pulse mode) using a 0.5% TA gel. The highest permeation was observed under the ultrasound treatment conditions of low frequency, high intensity, and in continuous mode.

Skin Permention of Ketoprofen from Lotion (케토프로펜 로오숀으로부터 약물의 피부투과)

  • 단현광;이윤석;박은석;지상철
    • Biomolecules & Therapeutics
    • /
    • v.5 no.4
    • /
    • pp.357-363
    • /
    • 1997
  • The effects of formulation variables of topical lotion on the skin permeation of ketoprofen were evaluated using excised rat skins. The formulation variables were the amounts of poloxamer 407, drug and ethanol, and penetration enhancers. The Keshary-Chien diffusion cells were used for the diffusion study. The flux of ketoprofen linearly decreased as the concentration of poloxamer increased from 5% to 15% in the preparation, and linearly increased as the amount of drug increased. Penetration enhancers such as fatty acids and fatty alcohols showed markedly enhancing effects at the level of 5%. Among them, the highest flux was shown in linolenic acid. From these results, optimum formula containing 3% ketoprofen, 5% poloxamer 407, 40% ethanol and 5% linolenic acid having the flux of 537.6 $\mu$g/$\textrm{cm}^2$/hr were noted.

  • PDF

Percutaneous Absorption Characteristics of Antidepressant Paroxetine (항우울제인 Paroxetine의 피부 투과 특성 연구)

  • Jung, Duck-Chae;Hwang, Sung-Kwy;Oh, Se-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.170-177
    • /
    • 2011
  • Transdermal drug delivery(TDS) offers many important advantages. For instance, it is easy and painless, it protects the active compound from gastric enzymes, and it avoids the hepatic first-pass effect. Also, it is simple to terminate the therapy if any adverse or undesired effect occurs. But skin is a natural barrier, and only a few drugs can penetrate the skin easily and in sufficient quantities to be effective. Therefore, in recent years, numerous studies have been conducted in the area of penetration enhancement. The most commonly used transdermal system is the skin patch using various types of technologies. Compared with other method of dosage, it is possible to use for a long term. It is also possible to stop the drug dosage are stopped if the drug dosage lead to side effect. Polysaccharide, such as xanthan gum and algin were selected as base materials of TDS. Also, these polymers were characterized in terms of enhancers and drug contents. Among these polysaccharide, the permeation rate of Paroxetine such as lipophilic drug was the fastest in xanthan gum matrix in vitro. We used glycerin, PEG400 and PEG800 as enhancers. Since dermis has more water content(hydration) than the stratum corneum, skin permeation rate at steady state was highly influenced when PEG400 was more effective for lipophilic drug. Proper selection of the polymeric materials which resemble and enhance properties of the delivering drug was found to be important in controlling the skin permeation rate.

Percutaneous absorption Characteristics of Anti hyperlipidemia Gel Ointment using Fibric acid (Fibric acid를 이용한 항고지혈증 겔 연고의 경피 흡수 특성)

  • Jung, Duck-Chae;Hwang, Sung-Kwy;Oh, Se-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.407-414
    • /
    • 2010
  • New biological treatments were being developed at a record place, but their potential could be compromised by a significant obstacle: the delivery of these drugs into a body. Pharmaceutical delivery is now nearly as important as product. New systems are being developed, and Drug Delivery Markets Series cover these new systems. Transdermal Delivery System(TDS) is often used as a method of drug dosage into the epidermic skin. An approach used to delivery drugs through the skin for therapeutic use as an alternative to oral, intravascular, subcutaneous and transmucosal routes. Various transdermal drug delivery technologies are described including the use of suitable formulations, carriers and penetration enhancers. The most commonly used transdermal system is the skin patch using various types of technologies. Compared with other methods of dosage, it is possible to use for a long term. It is also possible to stop the drug dosage are stopped if the drug dosage lead to side effect. Polysaccharides, such as karaya gum and glucomannan, were selected as base materials of TDS. Also, these polymers were characterized in terms of enhancers, drug contents. Among these polysaccharide, the permeation rate of karaya gum matrix was fastest in fibric acid(ciprofibrate) such as lipophilic drug in vitro. We used glycerin, PEG400 and PEG800 as enhancers. Since dermis has more water content(hydration) than the stratum corneum, skin permeation rate at steady state was highly influenced when PEG400 was more effective for lipophilic drug. Proper selection of the polymeric materials which resemble and enhance properties of the delivering drug was found to be important in controlling the skin permeation rate. Especially, this result suggests a possible use of polysaccharide gel ointment matrix as a transdermal delivery system of anti-hyperlipoproteinemic agent.

Screening of Skin-permeable Peptide in Thermal Stabilizing Formulation Using Phage Display (파지디스플레이를 이용한 성장인자 안정화 제형 맞춤형 피부 투과 펩타이드의 개발)

  • Lee, Seol-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.4
    • /
    • pp.326-333
    • /
    • 2018
  • In this study, we identified methods to improve heat stability and skin permeability of functional protein biopolymers, such as growth factors, enzymes, and peptides. The biopolymers participate in cellular activation and catalytic functions in vivo. Therefore, when applied to cosmetics, their efficacies are expected to be helpful for skin care. However, they have disadvantages that include instability to heat and low skin permeability due to their high molecular weight. To overcome these problems, we searched for a composition that increases heat stability. Stability was improved using a polymeric humectant having a long polyethylene glycol length, compared with a mono-molecular structure humectant. Next, to enhance skin permeation, a permeation enhancing peptide was selected from a phage library. The permeation enhancing peptide can be commonly used to promote the permeation of growth factors, enzymes, and peptides. Screening was performed on the polymeric humectant formulation. One dominant peptide from the modified-screening method was identified. Furthermore, it was confirmed that the permeability of the peptide was better than that of the peptide developed through a screening system based on phosphate-buffered saline. The data indicate that the polymeric humectant formulation will be helpful for increasing the heat stability of protein ingredients and that skin permeability could be increased by a formulation-specific, penetration-enhancing peptide.