• Title/Summary/Keyword: Skin Penetration

Search Result 250, Processing Time 0.034 seconds

Formulation and Skin Penetration Characteristics of Aceclofenac Plaster for Transdermal Delivery (아세클로페낙의 경피 제제설계 및 피부투과 특성)

  • Chung, Jong-Keun;Lee, Min-Suk;Park, Jeong-Hwa;Lee, Jang-Won;Kim, Ha-Hyung;Choi, Young-Wook;Lee, Kwang-Pyo
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • Aceclofenac is an non-steroidal antiinflammatory drug which has been used in the treatment of rheumatoidal rthritis and osteo-arthritis. In order to decrease the gastric ulcerogenic effects and contol the plasma level of aceclofenac, we have developed the transdermal delivery system of aceclofenac plaster, which were formulated employing matrix polymers of acrylates and penetration-enhancers such as $Lauroglycol^{\circledR}$, $Transcutol^{\circledR}$, oleic acid and linoleic acid. Using Franz diffusion cells mounted with a rat skin, transdermal penetration characteristics of the formulations were evaluated by the HPLC assay of aceclofenac and diclofenac, an active metabolite, in the receptor compartment of pH 7.2 phosphate buffered solution. Skin penetration was increased when the content of aceclofenac increased, showing the flux $(J,\;{\mu}g/cm^2/hr)$ of 0.37 and 2.50 for 2% and 6.75% of the content, respectively. The flux$(J,\;{\mu}g/cm^2/hr)$ from plasters made of $Durotak^{\circledR}$ 87-2074, $Durotak^{\circledR}$ 87-2510 and $Durotak^{\circledR}$ 87-2097 were 2.50, 2.77 and 4.39, respectively. $Durotak^{\circledR}$ 87-2074 showed the lowest penetration due to the carboxylic acid group in the polymer, which might form a strong hydrogen bonding with a secondary amine of aceclofenac. Although both $Durotak^{\circledR}$ 87-2510 and $Durotak^{\circledR}$ 87-2097 are amine-resistant adhesives, $Durotak^{\circledR}$ 872510 showed lower penetration than $Durotak^{\circledR}$ 87-2097 because of the hydroxyl group in $Durotak^{\circledR}$ 87-2510, which might form a weak hydrogen bonding with aceclofenac. These results reveal that the functional group in acrylic polymers would greatly affect the release of aceclofenac from the matrix, which is the rate-limiting step in the penetration of aceclofenac through rat skins. The penetration of aceclofenac from plasters using different penetration-enhancers increased in the following order: Transcutol < linoleic acid < oleic acid. And the flux from the plasters containing oleic acid as a penetrationenhancer was 2.22 times greater than that of creams, which suggest that a newly deveolped aceclofenac plaster could be used in the treatment of rheumatoidal arthritis and osteo-arthritis as an advanced transdermal delivery system.

  • PDF

The Studies on the Development of Low Irritable Preservative System with Phenoxyethanol in Cosmetics (Phenoxyethanol을 이용한 저자극 방부시스템 개발에 관한 연구)

  • Ahn, Gi-Woong;Lee, Chn-Mong;Kim, Hyeong-Bae;Jeong, Ji-Hen;Jo, Byoung-Kee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.1 s.49
    • /
    • pp.43-49
    • /
    • 2005
  • Recently, according as people who have sensitive skin increase, we've been giving more importance to the safety of cosmetics. Especially, preservative is known to be one of the main stimuli which cause side-effects of cosmetics. However, there have been few reports describing cell cytotoxicity, skin penetration, oil-aqueous phase partition, anti-microbial activity of preservatives and their correlation with skin irritation. The study is aimed to develop low irritable preservative system with phenoxyethanol, one of the most commonly used preservatives in cosmetics, considering various factors mentioned above. According to our results of cell cytotoxicity against human normal fibroblasts by means of MTT assay, phenoxyethanol showed the lowest cytotoxicity when compared to other preservatives tested (cytotoxicity: pro-pylparaben > butylparaben > ethylparaben > methylparaben > triclosan > phenoxyethanol), but human patch test for assessing shin primary irritation revealed that phenoxyethanol has higher skin irritation than methylparaben and triclosan. We performed in vitro skin penetration test using horizontal Franz diffusion cells with skin membrane prepared from hairless mouse (5 ${\~}$ 8 weeks, male) to evaluate the rate of skin penetration of preservatives. From the results, we found that the higher irritable property of phenoxyethanol in human skin correlates with its predominant permeability (skin penetration: phenoxyethanol > methylparaben > ethylparaben > propylparaben > butylfaraben > triclosan). Therefore, we made an effort to reduce skin permeability of phenoxyethanol and found that not only the rate of skin penetration of phenoxyethanol but also its skin irritation is dramatically reduced in formulas containing oils with low polarity. In the experiments to investigate the effect of oil polarity on the oil-aqueous phase partition of phenoxyethanol, more than $70\%$ of phenoxyethanol was partitioned in aqueous phase in formulas containing oils with low polarity, while about $70 {\~} 90\%$ of phenoxyethanol was partitioned in oil phase in formulas containing oils with high polarity. Also, in aqueous phase phenoxyethanol showed greater anti-microbial activity. Conclusively, it appears that we can develop less toxic preservative system with reduced use dosage of phenox-yethanol and its skin penetration by changing oil composition in formulas.

Iontophoresis Enhances Transdermal Delivery of Methylene Blue in Rat Skin (I): The Effect of Current Application Duration

  • Lee, Jae-Hyoung;Choi, Eun-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.6
    • /
    • pp.77-84
    • /
    • 2011
  • Purpose: The objectives of this study were to determine the enhancing effect of iontophoresis method as it transdermally deliver methylene blue (MB) using visual examination, in terms of penetration depth and tissue distribution in the skin, and to determine the effect of application duration on the efficacy of iontophoresis. Methods: Twenty-four male Sprague-Dawley rats were randomly divided into 5-, 10-, 20-, and 40-minute groups. These rats were exposed to either topical or anodic iontophoresis of 1% MB using a direct current of $0.5mA/cm^2$ for 5, 10, 20, and 40 minutes. Using cryosections of rat tissues, the penetration depth of MB was measured using light microscopy. Results: Significant differences in the penetration depth (F=54.20, p<0.001) were detected among the four groups. Post hoc comparisons of the penetration depth of MB data pooled across groups showed no significant difference between all topical application groups and 5-minute iontophoresis group, but did reveal a significant difference in the penetration depth between all topical application groups and 5-minute iontophoresis group versus 10-minute group, between the 10-minute and 20-minute group, and between the 20-minute and 40-minute iontophoresis group (p<0.05). Conclusion: The results demonstrate that iontophoresis enhances transdermal delivery of MB across stratum corneum of skin barrier by visual examination. Furthermore, the penetration depth of iontophoretic transdermal delivery of MB was dependent on the application duration. The duration of iontophoresis is one of the important factor in the efficacy of iontophoresis application.

Dermal Penetration Rate and Pharmacokinetics of the Insecticide Methidathion in Sprague-Dawley Rats

  • Sung, Ha-Jung;Kim, Jeong-Han
    • Toxicological Research
    • /
    • v.17 no.4
    • /
    • pp.317-323
    • /
    • 2001
  • The skin penetration rate of methidathion in vitro and pharmacokinetics of methidathion in vivo were studied with male Sprague-Dawley rats by dermal treatment. The in vitro skin penetration rates for Sprague-Dawley rats of methidathion technical (50 mg, 100 ${mu}ell$) and emulsifable concentrate (EC,40mg, 100${mu}ell$) were determined as 18.4 $\mu\textrm{g}$/c $m^2$/h (RSD : 6.5) and 18.5 $\mu\textrm{g}$/c $m^2$/h (RSD : 3.2), respectively. Dose-related systemic exposure (AUC) was observed in rats after dermal treatment. The corresponding AUC, $T_{max}$, $C_{max}$, and $T_{1}$2/ of methidathion in plasma were 1.5$\mu\textrm{g}$.hr/ml, 6 h, 0.10 $\mu\textrm{g}$/ml, and 16 h, for 116mg/kg doses, 3.2 $\mu\textrm{g}$. hr/ml, 8 h, 0.12 $\mu\textrm{g}$/ml, and 23 h, for 232 mg/kg doses and 10 $\mu\textrm{g}$. hr/ml, 12 h, 0.32 $\mu\textrm{g}$/ml, and 20 h, for 1,160 mg/kg doses respectively. The urinary excretion of methidathion, estimated wing an equation derived from the in vitro skin penetration study was 0.24~0.35% of the absorbed dose. The concentration of methidathion in kidney was higher than that in liver. Dose-dependent absorption and excretion of methidathion without saturation was observed under in vivo experimental condition.n.n.

  • PDF

Analysis of Relationship between Standard Depth of Penetration Skin Effect and Phase Angle of Defect Signal of Eddy Current Testing (와전류(渦電流) 표준침투(標準浸透) 깊이 표피효과(表皮效果)와 결함신호(缺陷信號) 위상각(位相角)의 관계해석(關係解析))

  • Chung, Tae-Eon;Chang, Kee-Oak;Park, Dae-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.4 no.2
    • /
    • pp.7-14
    • /
    • 1985
  • An experiment to investigate the rate of change of phase angle of eddy current output signal caused by outer surface defect of nonferromagnetic tube by variation of standard depth of penetration and variation of percent of tube wall penetration was carried out. The results of the experiment show that the phase angle of defect signal is increased with decreasing the standard depth of penetration or the depth of defect. The results also show that the phase angle is decreased with increasing the skin effect of eddy current, and that the resolution is decreased with decreasing the depth of defect.

  • PDF

Effect of Vehicles and Enhancers on the in vitro Skin Penetration of Aspalatone and Its Enzymatic Degradation Across Rat Skins

  • Gwak, Hye-Sun;Chun, In-Koo
    • Archives of Pharmacal Research
    • /
    • v.24 no.6
    • /
    • pp.572-577
    • /
    • 2001
  • The feasibility of skin penetration was studied for aspalatone (AM, acetylsalicylic acid maltol ester), a novel antithrombotic agent. In this studys hairless mouse dorsal skins were used as a model to select composition of vehicle and AM. Based on measurements of solubility and partition coefficient, the concentration of PC that showed the highest flux for AM across the hairless mouse skin was found to be 40%. The cumulative amount permeated at 48 h, however, appear inadequate, even when the PC concentration was employed. To identify a suitable absorption enhancer and its optimal concentration for AM, a number of absorption enhancers and a variety of concentration were screened for the increase in transdermal flux of AM. Amongst these, linoleic acid (LOA) at the concentration of 5% was found to have the largest enhancement factor (i.e., 132). However, a further increase in AM flux was not found in the fatty acid concentration greater than 5%, indicating the enhancement effect is in a bell-shaped currie. In a study of the effect of AM concentration on the permeation, there was no difference in the permeation rate between 0.5 and 1% for AM, below its saturated concentration. At the donor concentration of 2%, over the saturated condition, the flux of AM was markedly increased. A considerable degradation of AM was found during permeation studies, and the extent was correlated with protein concentrations in the epidermal and serosal extracts, and skin homogenates. In rat dorsal skins, the protein concentration decreased in the rank order of skin homogenate > serosal extract > epidermal extract. Estimated first order degradation rate constants were $6.15{\pm}0.14,{\;}0.57{\pm}0.02{\;}and{\;}0.011{\pm}{\;}0.004{\;}h^{-1}$ for skin homogenate, serosal extract and epidermal extract, respectively. Therefore, it appeared that AM was hydrolyzed to some extent into salicylmaltol by esterases in the dermal and subcutaneous tissues of skin. taken together, our data indicated that transdermal delivery of AM is feasible when the combination of PC and LOA is used as a vehicle. However, since AM is not metabolically stable, acceptable degradation inhibitors may be nervessary to fully realize the transdermal delivery of the drug.

  • PDF

Effect of Vehicles and Penetration Enhancers onthe Percutaneous Absorption of Ketorolac Tromethamine across Hairless Mouse Skin

  • Cho, Young-Ah;Gwak, Hye-Sun
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.234.1-234.1
    • /
    • 2003
  • The effects of vehicles and penetration enhancers on the in vitro permeation of ketorolac tromethamine (KT) across excised hairless mouse skins were investigated. Among pure vehicles examined, propylene glycol monolaurate (PGML) showed the highest permeation flux, which was 94.3${\pm}$17.3 mg/cm$^2$/hr. Even though propylene glycol monocaprylate (PGMC) alone did not show high permeation rate, the skin permeability of DT was markedly increased by the addition of diethylene glycol monoethyl ether (DGME); the enhancement factors were 19.0 and 17.1 at 20 and 40% of DGME, respectively. (omitted)

  • PDF

Effect of L-Menthol on the Percutaneous Absorption of Ketorolac Tromethamine Across Human Cadaver Skin (사람 카다베르 피부를 통한 케토롤락 트로메타민의 경피 흡수에 L-menthol이 미치는 영향)

  • Lee, Yong-Seok;Oh, Heung-Seol;Kim, Ha-Hyung;Lee, Kwang-Pyo
    • YAKHAK HOEJI
    • /
    • v.44 no.6
    • /
    • pp.595-600
    • /
    • 2000
  • Transdermal delivery of ketorolac tromethamine, a potent non-narcotic analgesic, through human cadaver skin was investigated in vitro. A mixture of ethanol/water (40/60) containing 0, 1, 3, 5, and 8 (w/v)% L-menthol were used as a vehicle and penetration enhancer respectively. The permeation of ketorolac through human cadaver skin from saturated drug solution was evaluated at $37^{\circ}C$ with modified Franz diffusion cell. The in vitro skin flux and lag time were $1.23\;{\pm}\;0.11\;{\mu}g/cm^2{\cdot}hr$ and $5.56\;{\pm}\;0.34\;hr$, respectively. The cumulative amount of penetrated ketorolac containing L-menthol in ethanol/water (40/60) binary system was increased by the following order; 3%, 5%, 8%, 1%, 0%, and the lag time was decresed by the following order; 3%, 5%, 8%, 0%, 1%. The results suggested that a potential use of 3% L-methol is an effective penetration enhancer of ketorolac tromethamine through the human cadaver skin.

  • PDF

Design of Solid Lipid Nanoparticles to Improve Penetration of Niacinamide through Artificial Skin Tissue (나이아신아마이드의 인공피부조직 투과 개선을 위한 고형지질나노입자의 설계 연구)

  • Yeo, Sooho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.133-138
    • /
    • 2021
  • In this study, Niacinamide (NI) was loaded into solid lipid nanoparticles (SLNs) and skin permeability was evaluated to improve skin permeability of NI, which was a skin whitening substance. NI was able to effectively load within SLN with a double-melting emulsification method, producing stable particles with average particle sizes of 263.30 to 436.93 nm and a zeta potential of -34.77 to -57.60 mV. Artificial skin tissue (SkinEthicTM RHE) derived from skin keratinocytes derived from human epidermal tissue was used for the skin permeation study of NI. Skin transmittance and deposition experiments of NI confirmed that all SLN formulations improved skin transmittance and deposition rates of NI, approximately 5.4 ~ 7.6 and 9.5 ~ 20.8 improvement over SLN applications. Therefore, SLN manufactured in this study have shown sufficient results to improve the skin permeability of the functional whitening substance, NI.

Enhanced Penetration of Loxoprofen across Excised Guinea Pig Skin from Solution Formulations (용액 처방으로부터 록소프로펜의 기니아픽 피부 투과 증진)

  • Kim, Tae-Sung;Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.4
    • /
    • pp.217-224
    • /
    • 2001
  • To develop a novel transdermal delivery system of loxoprofen (LP), a potent antiinflammatory and analgesic agent, the effects of various vehicles and penetration enhancers on the skin permeation of LP from solution formulations were investigated. The permeation rate of LP through excised guinea pig skin was measured using a side-by-side permeation system at $32^{\circ}C$. The solubilities of LP in various vehicles were determined by the equilibrium solubility method, and partition coefficients $(P_c)$ were determined. The solubility of LP increased in the rank order of water & isopropyl myristate (IPM) & glyceryl dicaprylate/dicaprate & propylene glycol dicaprylate/caprate & propylene glycol laurate (PGL) & polyethylene glycol 400 & diethylene glycol monoethyl ether (DGME) & ethanol. n-Octanol-water $P_c$ value was 15.5. Among pure vehicles tested, IPM and PGL showed highest fluxes of $89.9{\pm}5.0$ and $45.4{\pm}0.3\;{\mu}g/cm^2/hr$ from saturated solutions, respectively. However, it was not possible to demonstrate any correlation between the solubility of LP and its permeation rate, indicating the change in the barrier property of the skin and/or carrier mechanisms by vehicles tested. The addition of DGME to IPM or PGL markedly increased the solubility of LP, but the permeation rate did not decrease when the concentration of DGME in the cosolvent was increased upto 40%. The addition of linoleic acid (3%) in the cosolvent slightly increased the permeation rate, but others such as lauroyl sarcosine, fatty alcohols and fatty acids tested did not show enhancing effect. In conclusion, the DGME-IPM or DGME-PGL cosolvent system proved to be a good vehicle to enhance the skin permeation of LP.

  • PDF