• Title/Summary/Keyword: Skin Immune Activity

Search Result 78, Processing Time 0.025 seconds

Enhancement of Skin Immune Activation Effect of Collagen Peptides Isolated from Asterias amurensis (불가사리 유래 콜라겐 펩타이드의 피부 면역 증진 효과)

  • Jeong, Hyang-Suk;Kwon, Min-Chul;Han, Jae-Gun;Ha, Ji-Hye;Jin, Ling;Kim, Jin-Chul;Kwak, Hyeong-Geun;Hwang, Bo-Young;Lee, Hyeon-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.522-527
    • /
    • 2008
  • Low molecular peptides were isolated from Asterias amurensis via SDS-PAGE. The peptides were separated via consecutive gel filtration as five fractions (F1-F5) according to molecular weights, based on the results of MALDI-TOF MS analysis. The molecular weight of the most active peptide was estimated as 15,000 daltons. The peptide showed cytotoxicity on normal human fibroblast cells at levels as low as 20% when 1.0 mg/mL of the samples was added. The peptide also exhibited higher levels of nitric oxide production from macrophages than the lipopolysaccaharides. It was determined that prostaglendin $E_2$ production was significantly inhibited, up to 127.8% as compared to the control. The low molecular peptide inhibited hyaluronidase activity as 535.7 ${\mu}g/mL$ of $IC_{50}$. It can be concluded that the relatively low molecular weight peptide, fucoidan, from A. amurensis has excellent cosmetic and immunomodulatory activities, which can be considered as a possible resource of new cosmetic agents for skin immunomodulation.

Quercetin suppress CCL20 by reducing IκBα/STAT3 phosphorylation in TNF-α/IL-17A induced HaCaT cells (TNF-α/IL-17A 유도된 HaCaT 세포주에서 Quercetin의 IκBα/STAT3 인산화 조절에 의한 CCL20 발현 억제)

  • Kim, Mi Ran;Kim, Min Young;Hwang, Hyung Seo
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.211-219
    • /
    • 2020
  • Quercetin is a polyphenol compound with excellent antioxidant and anti-inflammatory activity. However, little has been reported about the efficacy of quercetin to control psoriasis. Thus, we aimed to investigate the effect of quercetin to regulate psoriatic dermatitis with HaCaT cell lines activated by TNF-α and IL-17A, which are in vitro psoriasis skin models. When quercetin was treated with TNF-α-activated HaCaT cell line, inflammatory cytokine expressions such as IL-1α, IL-1β and IL-6 were reduced by 49.1±7.14, 42.8±8.16, and 34.5±2.52%, respectively. In addition, mRNA expression levels of IL-8 and CCL20 the chemokines that attract immune cells such as Th17 cells and dendritic cells to the inflammatory reaction site, were also reduced by 38.4±5.83 and 52.9±4.59% compared to the TNF-α treatment group. The expression of proteins KRT6A and KRT16, which was nonspecifically increased in psoriatic skin was also significantly suppressed. Moreover, phosphorylation of IκBα and STAT3 proteins activated by TNF-α was also significantly inhibited. After stimulating the HaCaT with IL-17A, known as another psoriasis-inducing cytokine, it was observed that IκBα mRNA expression decreased by 55.8±5.28%, and STAT3 phosphorylation was downregulated by 36.3±6.81%. Finally, after co-activation by TNF-α/IL-17A, quercetin inhibited all of IL-1α, IL-1β, IL-6, TNF-α and CCL20 gene expression. The above results strongly suggest that quercetin is a material that has not only anti-oxidant and anti-inflammatory activities, but also has an activity in improving psoriasis.

Effect of target cell nitric oxide synthesis on the sensitivity to lymphokine-activated killer cell cytotoxicity (표적세포의 Nitric oxide 합성이 LAK 세포의 세포독성에 대한 예민도에 미치는 영향)

  • Park, Sung Il;Park, Ju Hyung;Lee, Chi Kug;Kim, Shin Chae;Choi, Bo Geum;Kwak, Jae Yong;Yim, Chang Yeol
    • IMMUNE NETWORK
    • /
    • v.1 no.2
    • /
    • pp.162-169
    • /
    • 2001
  • Background: Nitric oxide (NO), a cytotoxic molecule is produced in various tissues including tumor cells during interleukin-2 (IL-2) therapy . Lymphokine-activated killer (LAK) cells are induced during IL-2 therapy, and have cytotoxic activity against tumor cells. The current study investigated the effects of NO synthesized in target cells or exposure of target cells to NO on the sensitivity of target cells to LAK cell cytotoxicity. Methods: Cytotoxicity was measured using 4 h chromium release assays. LAK cells which were induced by a 4 day incubation of BALB/c mouse splenocytes with IL-2 (6,000 IU/mL) were employed as effector cells. RD-995 skin tumor cells originated from a C3H/HeN mouse were employed as target cells. NO synthesis in target cells was induced by a 24 h incubation of RD-995 cells with $IFN{\gamma}$ (25 U/mL), TNF (50 U/mL) and IL-1 (20 U/mL). S-nitrosyl acetylpenicillamine (SNAP), an NO donor, was used to expose target cells to NO. $N^G$-monomethyl-L-arginine (MLA) and carboxy-PTIO were added during cytotoxicity assays to inhibit NO synthesis, and to scavenge NO produced by target cells, respectively. Results: Sensitivity of NO-producing RD-995 cells to LAK cell cytotoxicity was decreased by addition of MLA and carboxy-PTIO during cytotoxicity assays. However, the two reagents had no effect on the sensitivity of non-NO-producing RD-995 cells. Pretreatment of RD-995 target cells with SNAP increased the sensitivity in comparison with untreated cells. Conclusions: Sensitivity of target cells to LAK cell cytotoxicity is increased by target cell NO synthesis or exposure to NO. Further studies are needed to evaluate whether these in vitro results have relevance to in vivo phenomena.

  • PDF

Selenium Inhibits Metastasis of Murine Melanoma Cells through the Induction of Cell Cycle Arrest and Cell Death

  • Song, Hyun-Keun;Hur, In-Do;Park, Hyun-Jin;Nam, Joo-Hyung;Park, Ga-Bin;Kong, Kyoung-Hye;Hwang, Young-Mi;Kim, Yeong-Seok;Cho, Dae-Ho;Lee, Wang-Jae;Hur, Dae-Young
    • IMMUNE NETWORK
    • /
    • v.9 no.6
    • /
    • pp.236-242
    • /
    • 2009
  • Background: Melanoma is the most fatal form of skin cancer due to its rapid metastasis. Recently, several studies reported that selenium can induce apoptosis in melanoma cells. However, the precise mechanism remains to be elucidated. In this study, we investigated the effect of selenium on cell proliferation in murine melanoma and on tumor growth and metastasis in C57BL/6 mice. Methods: Cell proliferation was measured by MTT assay in selenium-treated melanoma cells. Cell cycle distribution was analysized by staining DNA with propidum iodide (PI). mRNA and protein expression related to cell cycle arrest was measured by reverse transcription PCR and western blot. Tumor growth and metastasis was measured by in vivo model. Results: Selenium was suppressed the proliferation of melanoma cells in a dose dependent manner. The growth inhibition of melanoma by selenium was associated with an arrest of cell cycle distribution at G0/G1 stage. The mRNA and protein level of CDK2/CDK4 was suppressed by treatment with selenium in a time-dependent manner. In vivo, tumor growth was not suppressed by selenium; however tumor metastasis was suppressed by selenium in mouse model. Conclusion: These results suggest that selenium might be a potent agent to inhibit proliferative activity of melanoma cells.

Anti-atopic dermatitis effects of Parasenecio auriculatus via simultaneous inhibition of multiple inflammatory pathways

  • Kwon, Yujin;Cho, Su-Yeon;Kwon, Jaeyoung;Hwang, Min;Hwang, Hoseong;Kang, Yoon Jin;Lee, Hyeon-Seong;Kim, Jiyoon;Kim, Won Kyu
    • BMB Reports
    • /
    • v.55 no.6
    • /
    • pp.275-280
    • /
    • 2022
  • The treatment of atopic dermatitis (AD) is challenging due to its complex etiology. From epidermal disruption to chronic inflammation, various cells and inflammatory pathways contribute to the progression of AD. As with immunosuppressants, general inhibition of inflammatory pathways can be effective, but this approach is not suitable for long-term treatment due to its side effects. This study aimed to identify a plant extract (PE) with anti-inflammatory effects on multiple cell types involved in AD development and provide relevant mechanistic evidence. Degranulation was measured in RBL-2H3 cells to screen 30 PEs native to South Korea. To investigate the anti-inflammatory effects of Parasenecio auriculatus var. matsumurana Nakai extract (PAE) in AD, production of cytokines and nitric oxide, activation status of FcεRI and TLR4 signaling, cell-cell junction, and cell viability were evaluated using qRT-PCR, western blotting, confocal microscopy, Griess system, and an MTT assay in RBL-2H3, HEK293, RAW264.7, and HaCaT cells. For in vivo experiments, a DNCBinduced AD mouse model was constructed, and hematoxylin and eosin, periodic acid-Schiff, toluidine blue, and F4/80-staining were performed. The chemical constituents of PAE were analyzed by HPLC-MS. By measuring the anti-degranulation effects of 30 PEs in RBL-2H3 cells, we found that Paeonia lactiflora Pall., PA, and Rehmannia glutinosa (Gaertn.) Libosch. ex Steud. show an inhibitory activity of more than 50%. Of these, PAE most dramatically and consistently suppressed cytokine expression, including IL-4, IL-9, IL-13, and TNF-α. PAE potently inhibited FcεRI signaling, which mechanistically supports its basophil-stabilizing effects, and PAE downregulated cytokines and NO production in macrophages via perturbation of toll-like receptor signaling. Moreover, PAE suppressed cytokine production in keratinocytes and upregulated the expression of tight junction molecules ZO-1 and occludin. In a DNCB-induced AD mouse model, the topical application of PAE significantly improved atopic index scores, immune cell infiltration, cytokine expression, abnormal activation of signaling molecules in FcεRI and TLR signaling, and damaged skin structure compared with dexamethasone. The anti-inflammatory effect of PAE was mainly due to integerrimine. Our findings suggest that PAE could potently inhibit multi-inflammatory cells involved in AD development, synergistically block the propagation of inflammatory responses, and thus alleviate AD symptoms.

Study on the Antioxidant and Human Neutrophil Elastase Inhibitory Activities of Mushroom Ramaria formosa Extracts (붉은싸리버섯 추출물의 항산화 및 Human Neutrophil Elastase 저해활성)

  • Kim, Kwan-Chul;Kwon, Yong-Beom;Jang, Hae-Dong;Kim, Jae Wha;Jeong, Jae Cheol;Lee, Ik-Soo;Ha, Byung-Jo;Yoo, Ick-Dong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.3
    • /
    • pp.269-278
    • /
    • 2016
  • In searching for novel agents for skin anti-aging from natural resources, we found that the extract of the fruiting bodies of Ramaria formosa (R. formosa) had significant antioxidant and human neutrophil elastase (HNE) inhibitory activities. R. formosa extract exhibited a considerable DPPH radical scavenging activity with an antioxidant content of 117.0mg/mL (ascorbic acid equivalents) at the concentration of $500{\mu}g/mL$. The capacity of R. formosa extract to scavenge peroxy radicals measured by ORAC assay also showed dose-dependent antioxidant effect with $ORAC_{Roo}$ (trolox equivalents, $1{\mu}M$) values of 0.8, 5.2, and 7.8 at the concentrations of 1, 10, and $20{\mu}g/mL$. The cellular antioxidant capacity of R. formosa extract was investigated by assaying the cellular fluorescence intensity using dichlorodihydrofluorescein (DCF). The cellular oxidative stress induced by AAPH, $Cu^{2+}$ or $H_2O_2$ in HepG2 cells was significantly attenuated by more than 30% at $20{\mu}g/mL$ of R. formosa extract. HNE activity was reduced by treatment with R. formosa extract in a dose-dependent manner, and the $ED_{50}$ value for the ethanol extract of R. formosa was $42.9{\mu}g/mL$. R. formosa extract did not exhibited antimicrobial activity against four microorganisms including Bacillus subtilis (B. subtilis), Escherichia coli (E. coli), Candida albicans (C. albicans), Aspergillus oryzae (A. oryzae). Furthermore, the extract did not affect the inflammatory cytokine production of interleukin-10 and interferon-${\gamma}$ in NK92 cells. From the above results, we found that R. formosa extract has considerable antioxidant and elastase inhibitory effects, and does not stimulate immune cells. These findings suggest that R. formosa extract may be used as a bioactive component in cosmetic composition.

Effect of Panax ginseng on the Graft-versus-Host Reaction, Production of Leucocyte Migration Inhibitory Factor and Expulsion of Adult Trichinella spiralis in Mice (인삼이 이식편대숙주반응, 대식세포유주저지반응 및 Trichinella spiralis의 expulsion에 미치는 영향)

  • Ha, Tai-You;Lee, Jeong-Ho;Kim, Sang-Hyung
    • The Journal of the Korean Society for Microbiology
    • /
    • v.21 no.1
    • /
    • pp.133-144
    • /
    • 1986
  • This study was undertaken to assess the effect of ginseng administration on T lymphocyte induced local xenogenic graft-versus-host(GVM) reactions which were induced with thymocyte, spleen cell and lymph node cell of ICR mice. Mice received daily 10mg of 70% alcohol ginseng extract oral1y for 100days and control mice remained untreated for the same period of time. The cells from donor mice were injected intradermally into the closely shaven abdominal skin of Sprague-Dawley rats for GVH tests. The thymocyte from control(ginseng-untreated) mice showed a negative local GVH reaction, whereas thymocyte from experimental(ginseng-treated) mice showed a positive reaction with the rate of 17.4%. When spleen cells were injected, the incidence of positive local GVH reaction was 66.7% among ginseng-treated mice, as opposed to incidence of 45.5% of positive local GVH reaction among control mice. The incidence of positive local GVH reaction of the lymph node cells when injected into a recipient was 71.4% among ginseng-treated mice as compared with that of 18.9% among control mice. The relationship between spleen cell inoculum and intensity of the local GVH reaction was assessed in ginseng-untreated mice. The intensity of GVH reaction clearly appears to be dose related. In ginseng-treated mice, a minimum of $1{\times}10^7$ spleen cell was required for production of positive local GVH reaction with almost linear relationship up to an inoculum of $5{\times}10^8$ cells. In control mice, however, a minimum of $1{\times}10^8$ spleen cells was required for positive GVH reaction. These results strongly suggest that the ginseng administration augments significantly the local xenogenic GVH reaction which was used to assess T lymphocyte function and immunocompetence of mice and in addition to this, these results appear to support previous suggestions that the local GVH reaction consitutes a qualitative test of the functional activity of T lymphocytes. These results may be the first to induce local GVH reaction, employing rats as recipient and mice as donor. This study was also desingned to investigate some of the effects of ginseng extract on lymphocyte-macrophage interactions. This was accomplished by in vitro quantification of 1) migratory inhibitory factor(MIF) synthetic capacity of splenic lymphocytes in mice previously primed with ginseng 2) MIF responsiveness of mouse peritoneal macrophages or chicken peripheral leucocytes under the presence of ginseng extract 3) migration ability of chicken peripheral leucocytes by direct stimulation of ginseng extract or ginseng saponin and 4) immunosuppressive effects of immunosuppressants such as cyclophosphamide, cyclosporin A or dexamethasone. Mice divided equally into the ginseng and the saline groups, which received intraperitoneally daily 0.2ml of ginseng absolute alcohol-extract(5mg/ml) and same amount of saline for 15 days, respectively. The cellular immune responsiveness of these mice was assayed 15 days after ginseng pretreatment. Splenic lymphocytes of mice treated with ginseng, when stimulated with sensitized specific-antigen such as sheep red blood cells or toxoplasmin, or with polyclonal activator concanavalin A, produced significantly more MIF than those of control saline group. MIF responsiveness of normal mouse macrophages was significantly augmented when assayed under the presence of ginseng extract (1mg/ml). The migratory ability of normal chicken leucocytes in the absence of MIF was significantly decreased by the stimulation of ginseng extract alone. MIF response was significantly decreased by immunosuppressants and this impaired response was not restored by ginseng pretreatment. This study was additionally performed to evaluate the effect of ginseng on the expulsion of adult Trichinella spiralis in mice. ICR mice were infected experimentally by esophageal incubation of 300 T. spiralis infective muscle larvae prepared by acid-pepsin digestion of infected mice. and received oral administration of 70% alcohol ginseng extract(10mg/mouse/day) for the indicated days plus 4 days before infection. At various times after infection, the number of adult T. spiralis worms in small intestines was determined. Interestingly, ginseng-treatment was accompanied by accelerated expulson of T. spiralis. These results led to the conclusion that Panax ginseng caused some enhancing effect on GVH reaction, macrophage migration inhibition reaction and expulsion of T. spiralis. In addition these results suggested that the mechanisms responsible for this enhancement of ginseng may be chiefly or partially due to nonspecific stimulation of cell-mediated immune response.

  • PDF

Improving effect of psoriasis dermatitis by yakuchinone A in the TNF-α stimulated HaCaT cells (TNF-α 자극에 활성화된 HaCaT 세포주에서 Yakuchinone-A에 의한 건선 피부염 개선 효과)

  • Kim, Min Young;Hwang, Hyung Seo
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.1
    • /
    • pp.95-101
    • /
    • 2020
  • Psoriasis is an autoimmune skin disease that is accompanied by hyper proliferation of the epidermis, erythema of various sizes, and ulceration. However, the mechanism of the development of psoriasis dermatitis is unclear. Recently, it is known that the inflammatory cytokines and Th17 cells as well as chemokine (CC motif) ligand 20 (CCL20) are involved in the process of keratinocytes hyper-differentiation, which is common in psoriasis dermatitis. Therefore, we studied the effects of yakuchinone-A, an active ingredient of Alpinia oxyphylla Miquel known for its anti-inflammatory activity, to improve psoriasis dermatitis. First, cytotoxicity of yakuchinone-A was observed in cell counting kit-8 assay and not observed in 10 ㎍/mL concentration on the human keratinocyte HaCaT cells. Yakuchinone-A in the presence of tumor necrosis factor-alpha (TNF-α) on HaCaT cells inhibited mRNA expression of IL-6, IL-8, and TNF-α by up to 61.4±7.5, 23.6±1.5, 46.0±4.8%. CCL20, a chemokine that attracts immune cells such Th17 cells to the inflammation location, was also significantly suppressed by yakuchinone-A. In addition, IκB and STAT3 phosphorylation involved in the CCL20 expression was inhibited by yakuchinone-A in a concentration-dependent manner up to the level of 79.1±5.0, 80.8±2.3%. Furthermore, yakuchinone-A downregulated CCL20 mRNA expression level on IL-17A-activated HaCaT cells as a concentration-dependent manner. Based on these results, yakuchinone-A is expected to be developed as a new material for improving psoriasis dermatitis in the future.