• Title/Summary/Keyword: Skin Friction

Search Result 419, Processing Time 0.037 seconds

THEORETICAL STUDIES ON FRICTION DRAG REDUCTION CONTROL WITH THE AID OF DIRECT NUMERICAL SIMULATION - A REVIEW

  • Fukagata, Koji
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.96-106
    • /
    • 2008
  • We review a series of studies on turbulent skin friction drag reduction in wall-turbulence recently conducted in Japan. First, an identity equation relating the skin friction drag and the Reynolds shearstress (the FIK identity) is introduced. Based on the implication of the FIK identity, a new analytical suboptimal feedback control law requiring the streamwise wall-shear stress only is introduced and direct numerical simulation (DNS) results of turbulent pipe flow with that control is reported. We also introduce DNS of an anisotropic compliant surface and parameter optimization using an evolutionary optimization technique.

Does the Sailfish Skin Reduce the Skin Friction Like the Shark Skin? (돛새치 피부는 상어 피부처럼 마찰저항을 줄일 수 있을까?)

  • SaGong, Woong;Kim, Chul-Kyu;Choi, Sang-Ho;Jeon, Woo-Pyung;Choi, Hae-Cheon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.101-104
    • /
    • 2008
  • The sailfish is the fastest sea animal, reaching its maximum speed of 110km/h. On its skin, a number of V-shaped protrusions pointing downstream exist. Thus, in the present study, the possibility of reducing the skin friction using its shape is investigated in a turbulent boundary layer. We perform a parametric study by varying the height and width of the protrusion, the spanwise and streamwise spacings between adjacent ones, and their overall distribution pattern, respectively. Each protrusion induces a pair of streamwsie vortices, producing low and high shear stresses at its center and side locations, respectively. These vortices also interact with those induced from adjacent protrusions. As a result, the drag is either increased or unchanged for all the cases considered. In some cases, the skin friction itself is reduced but total drag including the form drag on the protrusions is larger than that of a smooth surface. Since the shape of present protrusions is similar to that used by Sirovich and Karlsson [Nature 388, 753 (1997)] where V-shaped protrusions pointing upstream were considered, we perform another set of experiments following their study. However, we do not obtain any drag reduction even with random distribution of those V-shaped protrusion.

  • PDF

Evaluation of Weathered Granite Soil l Geogrid Friction Properties and Pull out Test (화강 풍화토/지오그리드 인발시험 및 마찰특성 평가)

  • 조삼덕;김진만
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.87-100
    • /
    • 1996
  • The pull -out test has been used to investigate the friction properties between soil and grid type geosynthetics which is useful to measure the passive bearing resistance as well as the skin friction. In this paper, the friction properties between geogrid and a weathered granite soil are investigated by performing various pull-out tests. From the test results, a rational pull out test equipment and test method is suggested by evaluating the effects of major factors (such as geogrid width, location of soil box facing, vertical loads and pulll -out displacement rate, etc.) on pull -out test results.

  • PDF

Experimental Study on the Vortex Flow in a Concentric Annulus with a Rotating Inner Cylinder

  • Kim, Young-Ju;Hwang, Young-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.562-570
    • /
    • 2003
  • This experimental study concerns the characteristics of vortex flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one is rotating. Pressure losses and skin friction coefficients have been measured for fully developed flows of water and of 0.4% aqueous solution of sodium carboxymethyl cellulose (CMC), respectively, when the inner cylinder rotates at the speed of 0~600 rpm. Also, the visualization of vortex flows has been performed to observe the unstable waves. The results of present study reveal the relation of the bulk flow Reynolds number Re and Rossby number Ro with respect to the skin friction coefficients. In somehow, they show the existence of flow instability mechanism. The effect of rotation on the skin friction coefficient is significantly dependent on the flow regime. The change of skin friction coefficient corresponding to the variation of rotating speed is large for the laminar flow regime, whereas it becomes smaller as Re increases for the transitional flow regime and. then, it gradually approach to zero for the turbulent flow regime. Consequently, the critical (bulk flow) Reynolds number Re$\_$c/ decreases as the rotational speed increases. Thus, the rotation of the inner cylinder promotes the onset of transition due to the excitation of Taylor vortices.

An Experimental Study on the Transitional Flows in a Concentric Annu- lus with Rotating Inner Cylinder (안쪽축이 회전하는 환형관내 천이유동에 관한 연구)

  • 김영주;김철수;황영규
    • Journal of Energy Engineering
    • /
    • v.11 no.4
    • /
    • pp.299-305
    • /
    • 2002
  • The present experimental and numerical investigations are performed on the characteristics of transitional flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure losses and skin-friction coefficients have been measured for the fully devel-oped flow of water and that of 0.2% CMC-water solution at a inner cylinder rotational speed of 0∼600 rpm, respectively. The transitional flow has been examined by the measurement of pressure losses to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients. The occurrence of transition has been checked by the gradient changes of pressure losses and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, it is gradually decreased for turbulent flow regime.

Flow of non-Newtonian fluid in a concentric annulus with rotation (환형관내 비뉴튼유체의 회전유동에 관한 연구)

  • Kim, Young-Ju;Woo, Nam-Sub;Seo, Byung-Taek;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2095-2100
    • /
    • 2003
  • This Experimental study concerns the characteristics of vortex flow in a concentric annulus with a diameter ration of 0.52, whose outer cylinder is stationary and inner one is rotating. Pressure losses and skin-friction coefficients have been measured for fully developed flow of bentonite-water solution(5%) when the inner cylinder rotates at the speed $0{\sim}400rpm$. The results of present study reveal the relation of the bulk flow Reynolds number Re and Rossby number $R_o$ With respect to the skin friction coefficients. The effect of rotation on the skin friction coefficient is significantly dependent on the flow regime. In all flow regime, the skin friction coefficient is increased by the inner cylinder rotation. The critical (bulk flow) Reynolds number $Re_c$ decreases as the rotational speed increases. Thus, the rotation of the inner cylinder promotes the onset of transition due to the excitation of Taylor vortices.

  • PDF

Large Eddy Simulation of Turbulent Flow in an Optimal Diffuser (큰에디모사법을 이용한 최적 디퓨져내의 난류유동 해석)

  • Lim Seokhyun;Caoi Haecheon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.811-814
    • /
    • 2002
  • Using a mathematical theory, we show that the optimality condition of a turbulent diffuser with maximum pressure recovery at the exit is zero shear stress along the wall. The optimal diffuser shape is designed through iterative procedures by using the $k-{\varepsilon}-{\nu}^{2}-f$ turbulence model for flow simulation. The Reynolds number based on the bulk mean velocity and the channel height at the diffuser entrance is 18,000. We also perform large eddy simulation to validate the shape design results and investigate the flow characteristics near the zero-skin friction wall. Results from large eddy simulation show that the skin friction is slightly higher than zero but is still very small as compared to that of the flat plate boundary layer flow Although the time-averaged wall shear stress is slightly above zero along the diffuser wall, instantaneous flow reversals occur intermittently. The streamwise mein velocity shows an asymptotic behavior of the half-power-law near the wall where the skin friction is close to zero.

  • PDF

A Study on the Flows in a Concentric Annulus with rotating inner cylinder (안쪽축이 회전하는 환형관내 유동연구)

  • Kim Young-Ju;Woo Nam-Sub;Kwon Hyuk-Jung;Hwang Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.337-340
    • /
    • 2002
  • The present experimental and numerical investigations are performed for the characteristics of transitional flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one rotating. The flow field of an annulus has been numerically solved using a finite volume method. The pressure losses and Skin-friction coefficients have been measured for the fully developed flow of water and $0.2{\%}$ aqueous solution of sodium carboximethy1 cellulose (CMC), respectively at inner cylinder rotational speed of $0{\~}600rpm$. The transitional flow has been examined by the measurement of pressure losses to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients. The occurrence of transition has been checked by the gradient changes of pressure losses and skin-friction coefficients with respect to the Reynolds numbers. Consequently the critical(axial-flow) Reynolds number decreases as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the onset of Taylor vortices.

  • PDF

A Case Study on the Design of Drilled Shaft on Soft Ground in Vietnam (베트남 연약지반에서의 현장타설말뚝 설계 사례)

  • Seo, Won-Seok;Cho, Sung-Han;Choi, Ki-Byung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.591-604
    • /
    • 2008
  • In this study, two design examples of drilled shafts on soft ground in Ho-Chi-Minh City, Vietnam are introduced. One is for a 27-story apartment and the other is for a Arch bridge over Saigon river. Unlikely the normal cases in Korea, all of the bored pile foundations are supposed to be placed on soil layers. Therefore, skin friction between pile and ground is the most crucial design parameter. Three methods using SPT N value of sandy soil -Korean Road Bridge Code(1996), Reese and Wright (1977), and O'Neill and Reese (1988)- were adopted to obtain an ultimate axial bearing capacity. In order to verify the calculated bearing capacity, 3 sets of static load test and a Osterberg Cell test were performed at an apartment site and a bridge site respectively. LRFD (Load Resistance Factored Design) method was compared with ASD (Allowable Stress Design) method. On application of ASD method, safety factor for skin friction was adopted as 2 or 3 while safety factor for end bearing was 3. The design bearing capacities from ASD method matched well with those from LRFD method when safety factor for skin friction was adopted as 2.

  • PDF

Characteristics of Stress-Displacement on Uplift Loaded Group Piles (인발력을 받는 무리말뚝의 응력-변위 특성)

  • Lee, Jun-Dae;Ahn, Byeong-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.152-157
    • /
    • 2005
  • This experimental study was devoted to investigate skin friction of H group piles with uplift loading conditions in granite soil under laboratory test. Model piles made of steel embedded in weathered granite soil were used in this study. Pile arrangements($2{\times}2,\;3{\times}3$), pile space(2D, 4D, 6D), and soil density($D_r=40%,\;80%$) were tested. The main results obtained from the model tests can be summarized as follows. The series of tests found that ultimate uplift load and displacement for group piles were increased as piles space ratio increases to $D_r=40%$ of soil density. In the relative density of $D_r=80%$, bearing capacity for group piles was greater than for single pile. In the relative density of $D_r=40%$, the theoretical value of skin friction for group piles was greater than practical value. In the relative density of $D_r=80%$, both theoretical and practical value of skin friction for group piles were increased as piles space ratio increases.