• Title/Summary/Keyword: Skew steel box girder bridge

Search Result 3, Processing Time 0.087 seconds

A Study on Wheel Load Distribution Factors of Skew Steel Box Girder Bridges (강상자형 사교의 윤하중분배계수)

  • Seo, Chang-Bum;Song, Jae-Ho;Kim, Il-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.4 s.56
    • /
    • pp.148-158
    • /
    • 2009
  • Firstly the problems of existing foreign code concerning wheel load distribution factor for skew box girder bridges have been examined, and the main parameters which have effects on wheel load distribution factors are evaluated in this study. Further finite element analyses on various skew steel box girder bridges are carried out. Based on the analysis results, formulas to determine wheel load distribution factors are proposed using multiple regression analysis. It is found when using the proposed formulas in this study weak points of existing specifications could be improved and also time spent at structural analysis should be saved a lot, so that the validity and practicality could be verified.

Negative Support Reactions of the Single Span Twin-Steel Box Girder Curved Bridges with Skew Angles (단경간 2련 강박스 거더 곡선교의 사각에 따른 부반력 특성)

  • Park, Chang Min;Lee, Hyung Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.34-43
    • /
    • 2012
  • The behaviors of the curved bridges which has been constructed in the RAMP or Interchange are very complicate and different than orthogonal bridges according to the variations of radius of curvature, skew angle and spacing of shoes. Occasionally, the camber of girder and negative reactions can be occurred due to bending and torsional moment. In this study, the effects on the negative reaction in the curved bridge were investigated on the basis of design variables such as radius of curvature, skew angle, and spacing of shoes. For this study, the twin-steel box girder curved bridge with single span which is applicable for the RAMP bridges with span length(L) of 50.0m and width of 9.0m was chosen and the structural analysis to calculate the reactions was conducted using 3-dimensional equivalent grillage system. The value of negative reaction in curved bridges depends on the plan structures of bridges, the formations of structural systems, and the boundary conditions of bearing, so, radius of curvature, skew angle, and spacing of shoes among of design variables were chosen as the parameter and the load combination according to the design standard were considered. According to the results of numerical analysis, the negative reaction in curved bridge increased with an decrease of radius of curvature, skew angle, and spacing of shoes, respectively. Also, in case of skew angle of $60^{\circ}$ the negative reaction has been always occurred without regard to ${\theta}/B$, and in case of skew angle of $75^{\circ}$ the negative reaction hasn't been occurred in ${\theta}/B$ below 0.27 with the radius of curvature of 180m and in ${\theta}/B$ below 0.32 with the radius of curvature of 250m, and in case of skew angle of $90^{\circ}$ the negative reaction hasn't been occurred in the radius of curvature over 180m and in ${\theta}/B$ below 0.38 with the radius of curvature of 130m, The results from this study indicated that occurrence of negative reaction was related to design variables such as radius of curvature, skew angle, and spacing of shoes, and the problems with the stability including negative reaction will be expected to be solved as taken into consideration of the proper combinations of design variables in design of curved bridge.

Fragility characteristics of skewed concrete bridges accounting for ground motion directionality

  • Jeon, Jong-Su;Choi, Eunsoo;Noh, Myung-Hyun
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.647-657
    • /
    • 2017
  • To achieve this goal, two four-span concrete box-girder bridges with typical configurations of California highway bridges are selected as representative bridges: an integral abutment bridge and a seat-type abutment bridge. A detailed numerical model of the representative bridges is created in OpenSees to perform dynamic analyses. To examine the effect of earthquake incidence angle on the fragility of skewed bridges, the representative bridge models are modified with different skew angles. Dynamic analyses for all bridge models are performed for all earthquake incidence angles examined. Simulated results are used to develop demand models and component and system fragility curves for the skewed bridges. The fragility characteristics are compared with regard to earthquake incidence angle. The results suggest that the earthquake incidence angle more significantly affects the seismic demand and fragilities of the integral abutment bridge than the skewed abutment bridge. Finally, a recommendation to account for the randomness due to the ground motion directionality in the fragility assessment is made in the absence of the predetermined earthquake incidence angle.