• Title/Summary/Keyword: Skeletal muscles

Search Result 323, Processing Time 0.031 seconds

Characteristics of Structure and Expression Pattern of ADSF/resistin Gene in Korean Native Cattle

  • Kang, Hye Kyeong;Park, Ji Ae;Seo, Kang Seok;Kim, Sang Hoon;Choi, Yun Jai;Moon, Yang Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.329-334
    • /
    • 2006
  • Adipocyte-specific secretory factor (ADSF)/resistin, a hormone, is a small cysteine-rich protein secreted from adipose tissue and has been implicated in modulating adipogenesis in humans and rodents. The objective of this study was to clone a gene encoding ADSF/resistin and to characterize its function in Korean Native Cattle (Hanwoo). The coding sequence was 330 base pairs and it encoded a protein of 109 amino acids. An NCBI BLAST-search revealed the cloned cDNA fragment shared significant homology (82%) with the cDNA encoding the human ADSF/resistin. The nucleotide sequence homology of the Hanwoo sequence was 73% and 64% for the rat and mouse, respectively. A 654 bp ADSF/resistin gene promoter was cloned and putative binding sites of transcription factors were identified. Tissue distribution of ADSF mRNA was examined in liver, skeletal muscles (tenderloin, biceps femoris), subcutaneous fat, and perirenal fat by RT-PCR. ADSF mRNAs were detected in fat tissues but not in liver and muscles, suggesting that ADSF/resistin expression may be induced during adipogenesis. Although, the physiological function of ADSF/resistin in the cow remains to be determined, these data indicate ADSF is related to the adipocyte phenotype and may have a possibly regulatory role in adipocyte function.

Effects of Azumolene on Ryanodine Binging to Sarcoplasmic Reticulum of Normal and Malignant Hyperthermia Sucseptible Swine Skeletal Muscles

  • Kim, Do-Han;Lee, Young-Sup
    • Animal cells and systems
    • /
    • v.1 no.1
    • /
    • pp.77-80
    • /
    • 1997
  • DOantrolene is a primary specific therapeutic drug for prevention and treatment of malignant hyperthermia symptoms. The mechanisms underlying the therapeutic effects of the drug are not well understood. The present study aimed at the characterization of the effects of azumolene, a water soluble dantrolene analogue, on ryanodine binding to sarcoplasmic reticulum (SR) from normal and malign::lnt hyperthermia susceptible (MHS) swine muscles. Characteristics of $[^3H]ryanodine$ binding were clearly different between the two types of SR. Kinetic analysis of eH]ryanodine binding to SR in the presence of $2{\mu}M$ $Ca^{2+}$ showed that association constant $(K_{ryanodine}_7$ is significantly higher in MHS than normal muscle SR $(2.83 vs. 1.32{\times}10^7 M^{-1}$, whereas the maximal ryanodine binding capacity $(B_{max})$ is similar between the two types of SR. Addition of azumolene $(e.g. 400{\mu}M)$ did not significantly alter both $K_{ryanodine}$ and $B_{max}$ of $[^3H]$ryanodine binding in both types of SR, indicating that the azumolene effect was not on the ryanodine binding sites. Addition of caffeine activated $[^3H]$ ryanodine binding in both types of SR, and caffeine sensitivity was significantly higher in MHS muscle SR than normal muscle SR $(K_{caffeine}:3.24 vs. 0.82 {\times} 10^2 M^{-l}). Addition of azumolene $(e.g.400{\mu}M)$ decreased Kcaffeine without significant change in $B_{max}$ in both types of SR suggesting that azumolene competes with caffeine binding site(s). These results suggest that malignant hyperthermia symptoms are caused at least in part by greater sensitivity of the MHS muscle SR to the $Ca^{2+}$ release drug(s), and that azumolene can reverse the symptoms by reducing the drug affinity to $Ca^{2+}$ release channels.

  • PDF

The Efficacy of Respiratory Exercise Programs in the Elderly Persons with Hemiplegia (고령 편마비 환자에 대한 호흡운동 적용의 효과)

  • Kim, Soo-Min
    • PNF and Movement
    • /
    • v.5 no.2
    • /
    • pp.63-71
    • /
    • 2007
  • Objective : Respiratory muscle weakness and decreased chest mobility has been suggested to result from the deconditioning that accompanied activity level in chronic elderly stokes. The benefits of respiratory exercise programmes on exercise capacity and muscle strength in hemiplegia. This study aimed to determine the effects of selective inspiratory and expiratory muscles training and chest mobility exercise on patients with strokes to establish if an improved exercise capacity can be obtained in patients that are not limited in their daily activities. Methods & Intervention : Twelve patients were assigned to the intensive respiratory exercise group participated in a measures design that evaluated the subjects with pre-treatment and post-treatment. Thirteen subjects who were assigned to a control group received training with breathing exercise and resistance exercise of skeletal muscles. The subjects performed spirometry then undertook a 6-week programme of respiratory muscle and chest mobility training. Training for the two groups was carried out 2 times a week for 6 weeks. Measurements and Results : Spirometry(Forced Vital Capacity: FVC and Closed Circuit Spiromety: CCS) and thoracic mobility were measured before and after the 6 weeks. The experimental group improved significantly compared to control group in FVC, $FEV_1$, MVV, IRV and ERV, and upper chest wall expansion(p<0.05). No significant improvement was seen in thoracic mobility or lung function in control group(p>0.05). Conclusion : The major findings in this study were that a intensive 6week exercise programme of resistive breathing and chest mobility in patients with hemiplegia led to an increase in lung capacity. The resistive breathing exercise programme used here resulted in a significant increase in the chest excursion during breathing.

  • PDF

The Effects of Acupuncture at GB34 on Disuse Muscle Atrophy in Rats (흰쥐의 불용성 근위축에 양릉천 자침이 미치는 효과)

  • Kim, Bum Hoi
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.28 no.4
    • /
    • pp.1-9
    • /
    • 2018
  • Objectives Disuse muscle atrophy occurs in response to pathologies such as joint immobilization, inactivity or bed rest. Muscle disuse is accompanied by an increase in apoptotic signaling, which mediates some of the responses to unloading in the muscle. GB34 (Yanglingquan) is a acupuncture point on the lower leg and one of the most frequently used points in various skeletomuscular diseases. In this study, the hypothesis that the acupuncture at GB34 could attenuate immobilization-induced skeletal muscle atrophy was tested. Methods The left hindlimb immobilization was performed with casting tape in both GB34 group (n=10) and Control group (n=10). The rats in GB34 group were daily treated with acupuncture at GB34. After 2 weeks of immobilization, the morphology of right and left gastrocnemius muscles in both GB34 and Control groups were assessed by hematoxylin and eosin staining. To investigate the immobilization-induced muscular apoptosis, the immunohistochemical analysis of Bax and Bcl-2 was carried out. Results GB34 group represented the significant protective effects against the reductions of the left gastrocnemius muscles weight and average cross section area to compared with Control group. The acupuncture at GB34 significantly reduced the immunoreactivity of BAX and increased the immunoreactivity of Bcl-2 in gastrocnemius muscle compared with Control group. Conclusions These results suggest that the acupuncture at GB34 has protective effects against immobilization-induced muscle atrophy by regulating the activities of apoptosis-associated BAX/Bcl-2 proteins in gastrocnemius muscle.

Effects of High Voltage Pulsed Galvanic Stimulation on Skeletal Muscle in Rats (고압맥동전류 자극이 흰쥐의 탈신경근 섬유 형태에 미치는 영향)

  • Park Hwan-Jin
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.2
    • /
    • pp.145-152
    • /
    • 2002
  • This study was carried out of to determine effects of high voltage pulsed galvanic stimulation on the soleus. target muscle of the sciatic nerve, of white rat two condition. The coditions included normal, and denervated muscle. The histochemical, ultrastructural observations were made. The following results were obtains. 1. The histochemical observations found the inflammatory cells between muscle bundle and muscle fiber since 1-week control group. In addition, nucleus located in the muscle fiber was frequently observed. 2. The experimental group showed a similar phenomenom to the normal muscles in terms of glycogen granules in the 1-week group, where as fiber were not distinguishable in4-weeks group which indicated that the degenerative changes had occured. 3. The NADH-TR reaction showed that the red muscle slightly increased in the 2-weeks group, and the distinguished was impossible the red fiber 4. The ultrastructures of the muscles in both groups were severely bend, and a number of vacuoles were observed due to the destruction of mitochondria..

  • PDF

Effect of ${\alpha}-Lipoic$ Acid on Expression of pERK1/2 following Ischemia-Reperfusion Injury in the Hindlimb Muscle Flap of Rats (흰쥐 후지근 피판에서 허혈-재순환 손상시 pERK1/2 발현에 대한 ${\alpha}-lipoic$ Acid의 효과)

  • Song, Jeong-Hoon;Kim, Min-Sun;Park, Byung-Rim;Park, Han-Su;Chae, Jeong-Ryong;Lee, Hye-Me;Na, Young-Cheon
    • Archives of Reconstructive Microsurgery
    • /
    • v.14 no.2
    • /
    • pp.85-94
    • /
    • 2005
  • Purpose: This study was to evaluate the effect of ${\alpha}-lipoic$ acid, a potent free radical scavenger, on the expression of active form of extracellular signal-regulated kinase (pERK1/2) proteins from hindlimb muscles of rats following ischemia-reperfusion injury. Material and methods: 64 health, $280{\sim}350\;g$ weighted Sprague-Dawley male rats were used. In order to make a muscle flap, the gastrocnemius (GC) and soleus (SOL) muscles were dissected and elevated. The popliteal artery was occluded for 4hours and reperfused for 10 minutes, 30 minutes, 1 hour, 2 hours and 4 hours, respectively. Results: The ischemia by occlusion of the popliteal artery itself caused a minimal change in expression of phosphorylated form of proteins observed in hindlimb muscle. In contrast, after 4 hours of ischemia, immunoreactivity for pERK1/2 in the GC muscle showed dual peaks at 10 minutes and 4 hours after reperfusion. In ${\alpha}-lipoic$ acid treated group, the expression of pERK1/2 was increased significantly compared to I/R-only group. Conclusion: These results suggest that ${\alpha}-lipoic$ acid may protect I/R injury of the skeletal muscle through free radical scavening and activation of intracellular pERK1/2 expression.

  • PDF

Effects of Eucommiae Cortex on Myofiber Type Transition and MyoD Expression in Hind Limb Muscle Atrophy of Rats (두충(杜沖) 이 근육위축 흰쥐의 후지 근섬유형 및 MyoD 발현에 미치는 영향)

  • Yun, Duk-Young;Park, Seong-Ha;Lee, Jong-Soo
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.18 no.1
    • /
    • pp.47-63
    • /
    • 2008
  • Objectives : Eucommiae cortex is reported that it helps bone and skeletal muscle stronger. In case of bone, many report is presented, but reports related to skeletal muscle are rarely existed. So in order to investigate effects of Eucommiae cortex on the skeletal muscle atrophy following stroke, cerebral infarct was induced by the middle cerebral artery occlusion (MCAO) in the rats. Methods : In order to induce MCAO rats, nylon suture was advanced and then blocked middle cerebral artery(MCA). Water extract of Eucommiae cortex was treated for 15 days, once a day orally, after the MCAO. Effects were evaluated with muscle weights, muscle fiber type composition, cross-sectioned area of muscle fibers in soleus and gastrocnemius of the unaffected and affected hind limbs. And MyoD protein expression in gastrocnemius was demonstrated with immunohistochemistry and western blotting. Results : In the affected hind limb of the MCAO rats, muscle weight loss of gastrocnemius and tibialis anterior muscles were attenuated by Eucommiae cortex treatment. In soleus muscle of the affected hind limb of the MCAO rats, increase of type-I fibers and decrease of type-II fibers were induced by Eucommiae cortex treatment. In soleus muscle of the affected hind limb of the MCAO rats, decrease of cross-sectioned areas of type-I fibers was attenuated by Eucommiae cortex treatment. In gastrocnemius muscle of the affected hind limb of the MCAO rats, increase of type-I fibers and decrease of type-II fibers were induced by Eucommiae cortex treatment. In gastrocnemius muscle of the affected hind limb of the MCAO rats, decreases of cross-sectioned areas of type-I and type-II fibers were attenuated by Eucommiae cortex treatment. In gastrocnemius muscle of the affected and unaffected hind limb of the MCAO rats, MyoD expressions were increased by Eucommiae cortex treatment. Conclusions : These results suggest that Eucommiae cortex has a protective effect against muscle atrophy, through the inhibition of the muscle cell apoptosis, following the central nervous system demage.

Desmin Binding Property of Nebulin Isoforms

  • Jeon Eun-Hee;Lee Yeong-Mi;Lee Min-A;Kim Ji-Hee;Choi Jae-Kyong;Park Eun-Ran;Kim Hyun-Suk;Ahn Seung-Ju;Min Byung-In;Joo Young-Mi;Kim Chong-Rak
    • Biomedical Science Letters
    • /
    • v.12 no.2
    • /
    • pp.73-79
    • /
    • 2006
  • Nebulin is a giant ($600{\sim}900$ kDa), modular sarcomeric protein proposed to regulate the assembly, and to specify the precise lengths of actin filamints in vertebrate skeletal muscles. Recently, There is an evidence that the nebulin also expressed in non muscle tissue, brain and liver. We identified a new isoform of nebulin from adult brain library by PCR screening. It contains two simple-repeats exon 165, 166 and linker-repeats exon $154{\sim}161$ except exon 159. The nebulin modules M160 to M170 (exon 150 to exon 161) has been shown to bind desmin. In mature striated muscle, desmin intermediate filaments surround Z-discs and link individual myofibrils laterally at their Z-discs and to other intracellular structures, including the costameres and the intercalated discs of the sarcolemma, sarcoplasmic reticulum, mitochondria, T-tubules, and nuclei. Therefore, it is an interesting possibility that the differential splice pathways within the linker region of nebulin modify the affinity of nebulin's interaction with desmin. The specific interactions of nebulin and desmin were confirmed in vivo by yeast two hybrid experiments. To verify in the cellular level the interaction between nebulin isoform and desmin, we transfected COS-7 cell with EGFP-tagged nebulin and DsRed-tagged desmin. Based on evidence showing that despite exon 159 was deleted, the new isoform of nebulin was interact with desmin. This suggest that nebulin in brain may interact with another intermediate filament. The conservation of these ligand-binding capacity in brain and skeletal nebulins suggest that nebulins may have conserved roles in brain and skeletal muscle.

  • PDF

Effects of Cortisol on Endoplasmic Reticulum-stress, Apoptosis, and Autophagy in Mouse Muscle C2C12 Cells (생쥐 근육세포에서 코티졸이 세포질세망 스트레스, 자연 세포사멸과 자가포식에 미치는 영향)

  • Shin, Donghyun;Kim, Kyoung Hwan;Lee, Ji Hyun;Cho, Byung-Wook
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1127-1131
    • /
    • 2018
  • Cortisol, a steroid hormone, functions within metabolism, immune response, and stress. Intense or prolonged physical exercise increases cortisol levels to enhance the gluconeogenesis pathway and stabilize blood glucose level. However, cortisol also exerts a negative impact on muscle function and creates a stressful environment in skeletal muscle cells. The present study investigated the function of cortisol as a stress hormone. To examine the effect of the exercise-induced hormone cortisol on skeletal muscles, C2C12 cells were cultured and treated with cortisol at different concentrations. As a result, we found that the morphology of C2C12 changed remarkably with 5 ug/ml cortisol treatment. Western blot analysis was conducted to learn whether ER-stress and autophagy were induced. We found that the expression ratio of LC3I/LC3II decreased and BiP expression increased after cortisol treatment. In addition, immunocytochemistry analysis with IER3 antibody clearly showed that apoptosis is induced after 12-hour cortisol treatment. These results indicate that cortisol treatment could induce apoptosis, ER-stress, and autophagy in muscle cells. This study would provide valuable information in the study of the effects of exercise on skeletal muscle cells and the development of additives to reduce cortisol stress.

Assessment of Effect of Pulmonary Rehabilitation on Skeletal Muscle Metabolism by $^{31}P$ Magnetic Resonance Spectroscopy (호흡재활치료 전후 $^{31}P$ 자기공명분석법을 이용한 골격근대사의 변화에 관한 연구)

  • Cho, Won-Kyung;Kim, Dong-Soon;Choe, Kang-Hyeon;Park, Young-Joo;Lim, Tae-Hwan;Shim, Tae-Sun;Lim, Chae-Man;Lee, Sang-Do;Koh, Youn-Suck;Kim, Woo-Sung;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.5
    • /
    • pp.1040-1050
    • /
    • 1997
  • Pulmonary rehabilitation has been known to improve dyspnea and exercise tolerance in patients with chronic lung disease, although it does not improve pulmonary function. The mechanism of this improvement is not clearly explained till now; however some authors suggested that the improvement in the skeletal muscle metabolism after the rehabilitation could be a possible mechanism. The metabolc changes in skeletal muscle in patients with COPD are characterized by impaired oxidative phosphorylation which causes early activation of anaerobic glycolysis and excess lactate production with exercise. In order to evaluate the change in the skeletal muscle metabolism as a possible cause of the improvement in the exercise tolerance after the rehabilitation, noninvasive $^{31}P$ magnetic resonance spectroscopy(MRS) of the forearm flexor muscle was performed before and after the exercise training in nine patients with chronic lung disease who have undertaken intensive pulmonary rehabilitation for 6 weeks. 31p MRS was studied during the sustained isometric contraction of the dominant forearm flexor muscles up to the exhaustion state and the recovery period. Maximal voluntary contraction(MVC) force of the muscle was measured before the isometric exercise, and then 30% of MVC force was constantly loaded to each patient during the isometric exercise. After the exercise training, exercise endurance of upper and lower extremities and 6 minute walking distance were significantly increased(p<0.05). There were no differences of baseline intracellular pH (pHi) and inorganic phosphate/phosphocreatine(Pi/PCr). After rehabilitation pHi at the exercise and the exhaustion state showed a significant increase($6.91{\pm}0.1$ to $6.99{\pm}0.1$ and $6.76{\pm}0.2$ to $6.84{\pm}0.2$ respectively, p<0.05). Pi/PCr at the exercise and the recovery rate of pHi and Pi/PCr did not show significant differences. These results suggest that the delayed intracellular acidosis of skeletal muscle may contribute to the improvement of exercise endurance after pulmonary rehabilitation.

  • PDF