• Title/Summary/Keyword: Sizing process

Search Result 199, Processing Time 0.029 seconds

Analysis of a Process Sequence in Precision Press Forming of Aperture and Construction of Design System (정밀 전자총 부품 Aperture 성형공정 해석 및 설계 시스템 구축)

  • Byun, S.K.;Huh, B.W.;Kang, B.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.76-84
    • /
    • 1997
  • A process sequence in precision press forming of electrnic components is investigated by the finite element method. Aperture, a key component of electronic gun, is formed through a sequence of about 15 operation, among which the beading & bending, the first piercing, the first coining, and the second coining operations are expected to be most critical in view of industrial experts opinions. Thus, the analysis per- formed by a commercial code MARC focuses on the three operations, and comparisons are made between the results of the analysis and the measurements of experimental forming of the component.

  • PDF

Experimental Study on the Surface Defects of Scribed Glass Sheets (절단 유리판의 표면결함에 관한 실험적 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.332-337
    • /
    • 2008
  • This paper presents the surface defect analysis based on the experimental investigation of scribed glasses. The scribing process by a diamond wheel cutter is widely used as a reliable and inexpensive method for sizing of glass sheets. The wheel cutter generates a small median crack on the glass surface, which is then propagated through the glass thickness for complete separation. The surface contour patterns in which are formed during a scribing process are strongly related to wheel cutter parameters such as wheel tip surface finish, tip angle and wheel diameter, and cutting process parameters such as scribing pressure, speed and tooling technique. The scribed surface of a glass sheet provides normal Wallner lines, which represent regular median cracks and crack propagation in glass thickness, and abnormal surface roughness patterns. In this experimental study, normal and abnormal surface topographic patterns are classified based on the surface defect profiles of scribed glass sheets. A normal surface of a scribed glass sheet shows regular Wallner lines with deep median cracks. But some specimens of scribed glass sheets show that abnormal surface profiles of glass sheets in two pieces are represented by a chipping, irregular surface cracks in depth, edge cracks, and combined crack defects. These surface crack patterns are strongly related to easy breakage of the scribed glass imposed by external forces. Thus the scribed glass with abnormal crack patterns should be removed during a quality control process based on the surface defect classification method as demonstrated in this study.

Optimization and Structure Analysis of Brake Disc for Free-fall Winch (자유 낙하 윈치용 브레이크 디스크의 구조해석 및 최적설계)

  • Ku, Hyoun-Kon;Kim, Jin-Woo;Won, Cheon;Song, Jung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.55-61
    • /
    • 2012
  • The structure of winch brake disk was successfully designed and developed based on sizing optimization. In this research, static analysis was performed by commercial software ANSYS v12.0. To simulate the working process of disk brake, the real properties of materials and working conditions were considered. Based on the results of the static structural analysis, the existing designs of the brake discs were optimized. Among existing designs, there are three cases that have achieved an efficient light weight around 200g. As a result, the optimized weight of each case was 3.41kg, 3.42kg, and 3.44kg, respectively. Finally, through prototyping and performance testing, the stability of the optimized brake disc was verified. Although, this free-fall winch brake disk had been developed in design and evaluation techniques, more detailed plans for developing the disk brake structure were also proposed as a further study based on this research.

A study on Net-shape technology of Automotive Lock-up Hub using Cold back pressure forming (배압 성형기술을 이용한 Lock-up Hub의 정형제조 기술에 관한 연구)

  • Kwon, Y.C.;Lee, J.H.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.173-176
    • /
    • 2007
  • The characteristics of the tool system give many effects into the costs and qualities for the finished components. This study proposes a new method for manufacturing of high manufacturing productivity, production process reduction and low cost through back pressure forming. The Lock-up hub is manufactured through many processes, such as upsetting($1^{st}$ Forming), piercing, direct extrusion($2^{nd}$ Forming), final sizing process($3^{rd}$ Forming). In this study, process design for closed-die forging of a Lock-up hub used for a component of automobile transmission was made using three-dimensional finite element simulations, and the strain distributions and velocity distributions are investigated through the post processor. The rigid-plastic finite-element method for back pressure forging has been used in order to reduce development time and die cost. Using the FEM simulation, we found the optimum value of back pressure. The prototypes of Lock-up hub parts were forged into the net-shape. In the experiment, lead precision of tooth are measured by the CCMM(Contact Coordinate Measuring Machine). The dimensional accuracy of forged part was improved up to the 40% when back press was applied.

  • PDF

Application of Soft Computing Based Response Surface Techniques in Sizing of A-Pillar Trim with Rib Structures (승용차 A-Pillar Trim의 치수설계를 위한 소프트컴퓨팅기반 반응표면기법의 응용)

  • Kim, Seung-Jin;Kim, Hyeong-Gon;Lee, Jong-Su;Gang, Sin-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.537-547
    • /
    • 2001
  • The paper proposes the fuzzy logic global approximate optimization strategies in optimal sizing of automotive A-pillar trim with rib structures for occupant head protection. Two different strategies referred to as evolutionary fuzzy modeling (EFM) and neuro-fuzzy modeling (NFM) are implemented in the context of global approximate optimization. EFM and NFM are based on soft computing paradigms utilizing fuzzy systems, neural networks and evolutionary computing techniques. Such approximation methods may have their promising characteristics in a case where the inherent nonlinearity in analysis model should be accommodated over the entire design space and the training data is not sufficiently provided. The objective of structural design is to determine the dimensions of rib in A-pillar, minimizing the equivalent head injury criterion HIC(d). The paper describes the head-form modeling and head impact simulation using LS-DYNA3D, and the approximation procedures including fuzzy rule generation, membership function selection and inference process for EFM and NFM, and subsequently presents their generalization capabilities in terms of number of fuzzy rules and training data.

Switch Design of TM Type SIDO DC-DC Buck Converter for Camera Module (카메라 모듈용 TM 방식 SIDO DC-DC 벅 컨버터의 스위치 설계)

  • Choi, Hun;Lee, Dong-Keon;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.57-63
    • /
    • 2012
  • In this paper, a switch sizing method is proposed in order to prevent the cross-regulation in the TM type SIDO DC-DC buck converter. In TM type SIDO DC-DC buck converter, a DCM operation is required. In the DCM operation, the inductor peak current is larger than that in the CCM. Because of the larger inductor peak current and the added switch resistance, the voltage drop is increased, resulting in possible cross-regulation. To solve this problem, the switch resistance must be considered in sizing the switch. To simplify the calculation of the resistance, the inductor current was replaced by the average load current. Using the proposed method, TM type SIDO DC-DC buck converter for camera module was designed to provide two independent supply voltage(2.8 V and 1.8 V). The designed circuit was fabricated in a standard $0.35{\mu}m$ CMOS process. At a switching frequency of 1 MHz and a load current of 200 mA, a power effciency of 80.7% was achieved.

Investigation of MVR and TVR in Chemical Processes by Using Waste Steam (화학공정 내 폐증기를 활용한 MVR 및 TVR 연구)

  • Lee, Chang Min;Lim, Jeong Yeol;Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.201-206
    • /
    • 2015
  • The MVR was theoretically modeled by performing the polytropic process, and the polytropic coefficient was estimated by using the performance curve provided by the manufacturers. The TVR was investigated by applying the conservation equations to the movement of fluids inside the TVR. The size of the nozzle and diffuser was determined. Theoretical MVR and TVR modeling was verified by comparing the results of the model with the available design data. Besides, the effects of multi-staging of the MVR on power consumption, and the effects of suction and primary pressure on the sizing of TVR were investigated.

Machining Analysis of the Autofrettaged Compound Cylinder (자긴가공된 복합실린더의 기계가공해석)

  • Park, Jae-Hyun;Kim, Jae-Hoon;Cha, Ki-Up;Hong, Suk-Kyun;Lee, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.800-807
    • /
    • 2007
  • Autofrettage process is used for internal forming and sizing of cylinder designed to withstand high internal pressures. Once the tube is autofrettaged, it needs to be machined to its final dimensions both at the bore and its outer surface. This paper presents an analytical analysis and numerical analysis of machined compound cylinder using finite element code, ANSYS10.0. An analytical model for predicting the level of autofrettage following either inner, outer, or combined machining of the compound cylinder is developed for the autofrettage residual stress field is simulated by an autofrettaged pressure. The autofrettaged pressures are obtained by using trying-error method. As autofrettage percentage is 20 % and 40 %, the numerical results are found to be in almost agreement with the analytical ones. However, as autofrettage percentage is 60 %, the numerical results have a little difference with the analytical ones.

Optimum Design of Two-Dimensional Steel Structures Using Genetic Algorithms (유전자 알고리즘을 이용한 2차원 강구조물의 최적설계)

  • Kim, Bong-Ik;Kwon, Jung-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.75-80
    • /
    • 2007
  • The design variables for structural systems, in most practical designs, are chosen from a list of discrete values, which are commercially available sizing. This paper presents the application of Genetic Algorithms for determining the optimum design for two-dimensional structures with discrete and pseudocontinuous design variables. Genetic Algorithms are heuristic search algorithms and are effective tools for finding global solutions for discrete optimization. In this paper, Genetic Algorithms are used as the method of Elitism and penalty parameters, in order to improve fitness in the reproduction process. Examples in this paper include: 10 bar planar truss and 1 bay 8-story frame. Truss with discrete and pseudoucontinuous design variables and steel frame with W-sections are used for the design of discrete optimization.

Machining effect of the Autofrettaged Compound Cylinder (자긴가공된 이중실린더의 기계가공효과)

  • Park, Jae-Hyun;Lee, Young-Shin;Kim, Jae-Hoon;Kong, Jeong-Pyo;Cha, Ki-Up
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.620-625
    • /
    • 2007
  • Autofrettage process is used for internal forming and sizing of cylinder designed to withstand high internal pressures. Once the tube is autofrettaged, it needs to be machined to its final dimensions both at the bore and its outer surface. This paper presents an analytical analysis and numerical analysis of machined compound cylinder using finite element code, ANSYS10.0. An analytical model for predicting the level of autofrettage following either inner, outer, or combined machining of the compound cylinder is developed for the autofrettage residual stress field is simulated by an autofrettaged pressure. The autofrettaged pressures are obtained by using trying-error method. As autofrettage percentage is 20 %, the numerical results are found to be in almost agreement with the analytical ones. However, as autofrettage percentage is 60 %, the numerical results have a little difference with the analytical ones.

  • PDF