• Title/Summary/Keyword: Sizing Pressing

Search Result 3, Processing Time 0.017 seconds

Effect of Base Paper Properties on Warp of Corrugated Board (골판지의 와프 현상발생에 대한 원지 특성의 영향)

  • Lee Jin-Ho;Park Jong-Moon;Lee Sang-Hyun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.1 s.113
    • /
    • pp.54-61
    • /
    • 2006
  • Basically corrugated board is composed of three layers of different basis weight and stock composition. Warp is well-known for one of the most important problems of corrugated board production. Warp is caused by difference of hygro-expansibility of linears between top and bottom. This research was performed to evaluate the effect of paper properties on the warp of corrugated board. To evaluate warp, dynamic expansion properties of paper was tested using DPM(dynamic penetration measuring system). The effects of sizing, stock composition and wet-pressing on dynamic expansion properties were also evaluated. Commercial base papers showed different dynamic expansion property depending on stock composition and papermaking operation. Sizing treatment decreased and wet-pressing increased the amount of dynamic expansion. To reduce warp of corrugated board, management of dynamic expansion of base papers should be controlled by manipulating moisture, heat and tension, using a variety of adjustments available on the corrugator.

Prediction of Plastic Deformation Behavior of the Side Surface of Slab during Hot Rough Rolling (열간 조압연 공정에서 슬래브 측면부의 소성변형거동 예측)

  • Jeong, J.H.;Lee, K.H.;Lee, S.B.;Lee, I.K.;Lee, S.H.;Kim, H.J.;Lee, K.Y.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.23 no.7
    • /
    • pp.425-430
    • /
    • 2014
  • The aim of the current study was to predict the plastic deformation behavior of a heated slab during hot rough rolling. FE-simulations were performed to investigate the metal flow and to locate the position of surface material from the slab through the rough rolling and onto the strip, using a material point tracking technique. In addition, experimental hot rolling trials were conducted where artificial defects were impressed onto a heated slab in order to validate the FE-simulation results. The simulated results show the same tendency of deformation behavior as the experimental measurements. The movement of slab defects from the side surface towards the strip center is directly linked to the extent of lateral spread during the rolling.

Effect of Strength Increasing Sizes on the Quality of Fiberboard (섬유판(纖維板)의 증강(增强)사이즈제(齊)가 재질(材質)에 미치는 영향(影響))

  • Shin, Dong So;Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.30 no.1
    • /
    • pp.19-29
    • /
    • 1976
  • The fiberboard and paper mills in this country are much affected by the price hikes and shortage of phenolic resins, since phenolic acid as a raw material depends on imported good. It is prerequisite to fiberboard industry to help replace with other sized and stabilize the prices and supply of them, improving the quality of boards. Thus, the present study was carried out to examine the effect of strength increasing sized such as urea formaldehyde resin (anion and cation type) and urea melamine copolymer resin, on the quality of the wet forming hardboard, and comparing them with two types of proprietary modified melamine resins, and ordinary size, phenol resin. The Asplund pulp was prepared from wood wastes mixed with 20 percent of lauan and 80 percent of pines as a fibrous material. After sizing agents were added at a pH of 4.5 for 10 minutes with alum in the beater, the stock was made in the form of wet sheet, prepared, and then performed by hot pressing cycle: $180^{\circ}C$, $50-6-5kg/cm^2$, 1-2-7 minutes. The properties of hardboard were examined after air conditioning. The results obtained are summarized as follows: 1. There is a significant difference in specific gravity among hardboards that were treated with strength increasing resins, but no difference is effected by the increase in the resin content. In the case of modified melamine resin, its specific gravity is highest. The middle group comprises cation type of urea resin, anion type of urea resin, and acid colloid of urea-melamine copolymer resin. The lowest is phenolic resin. 2. The difference of the moisture content of hardboard both by the resins and by the amount of each resin applied is significant. The moisture content of hardboard becomes lower along with the increase of each resin content, but there is no difference between 2 and 3 percent. 3. For water absorption, there is a significant difference both in the adhesives used and in the amount of paraffin wax emulsion. The water resistance becomes higher inn proportion to the content of the paraffin wax emulsion. To satisfy KS F standards of the water resistance, a proprietary modified melamine resin (p-6100) and modified cation type of urea resin (p-1500) do not require any paraffin wax emulsion, but in the case of anion type of urea resin, cation type of urea resin, and urea-melamine copolymer resin, 1 percent of paraffin wax emulsion is needed, and 2 percent of paraffin wax emulsion in the case of phenolic resin. 4. The difference of flexural strength of hardboard both by the resins and by the amount of each resin is significant. Modified melamine resin shows the highest degree of flexural strength. Among the middle group are urea-melamine copolymer resin, p-1500, anion type of urea resin, and cation type of urea resin. Phenolic resin is the lowest. The cause may be attributable to factors combined with the pressing temperature, sizing effect, and thermal efficiency of press platens heated electrically. 5. Considering the economic advantages and properties of hardboard, it is proposed that urea-melamine copolymer resin and cation type of urea resin be used for the development of the fiberboard industry. It is desirable to further develop the modified urea-melamine copolymer resin and cation type of urea resin through continuous study.

  • PDF