• Title/Summary/Keyword: Size separation

Search Result 966, Processing Time 0.026 seconds

A Study on the Physical Separation Characteristics of Valuable Metals from the Waste Printed Wiring Boards (물리적 처리에 의한 폐 컴퓨터 기판으로부터 유가금속의 분리선별 특성 연구)

  • 현종영;채용배;정수복
    • Resources Recycling
    • /
    • v.11 no.1
    • /
    • pp.9-18
    • /
    • 2002
  • Printed wiring boards(PWBs) of the obsolete computers are composed of various organic and inorganic compounds as well as metals and alloys. As convinced that the valuable metals obtained from the PWBs are effectively utilized as secondary resources when recovered by economical methods, in this study, an investigation for characterizing the physical separation techniques is conducted. For the recovery of them, the sockets and chips dismantled from PWBs by scraping and residual resin boards are subjected to the appropriate separation processes according to the physical properties of each part. In the case of crushed socket scraps size ranged from -2.36 mm to +1.18 mm, approximately 97 wt% of the product obtained by magnetic separation consists of metallic compounds. In the case of chip scraps, 97% of Fe-Ni alloy and 95% of Cu metal are recovered by the combined process of air classification and dry magnetic separation in the size range from -2.36 mm to +0.15 mm. Ball milling is adopted in order to improve the removal efficiency of the thin-printed metallic materials on the residual resin boards and approximately 77% of Cu metal is recovered by zigzag separation after ball milling.

Vapor Permeation Characteristics of TiO2 Composite Membranes Prepared on Porous Stainless Steel Support by Sol-Gel Method

  • Lee, Yoon-Gyu;Lee, Dong-Wook;Kim, Sang-Kyoon;Sea, Bong-Kuk;Youn, Min-Young;Lee, Kwan-Young;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.687-693
    • /
    • 2004
  • Composite membranes with a titania layer were prepared by soaking-rolling method with the titania sol of nanoparticles formed in the sol-gel process and investigated regarding the vapor permeation of various organic mixtures. The support modification was conducted by pressing $SiO_2$ xerogel of 500 nm in particle size under 10 MPa on the surface of a porous stainless steel (SUS) substrate and designed the multi-layered structure by coating the intermediate layer of ${\gamma}-Al_2O_3$. Microstructure of titania membrane was affected by heat-treatment and synthesis conditions of precursor sol, and titania formed at calcination temperature of 300$^{\circ}C$ with sol of [$H^+$]/[TIP]=0.3 possessed surface area of 210 $m^2$/g, average pore size of 1.25 nm. The titania composite membrane showed high $H_2/N_2$ selectivity and water/ethanol selectivity as 25-30 and 50-100, respectively. As a result of vapor permeation for water-alcohol and alcohol-alcohol mixture, titania composite membrane showed water-permselective and molecular-sieve permeation behavior. However, water/methanol selectivity of the membrane was very low because of chemical affinity of permeants for the membrane by similar physicochemical properties of water and methanol.

Development of functional microsphere (I) - Formation and characteristics of poly(ethylene-co-vinyl acetate) microspheres via thermally induced phase separation - (기능성 마이크로스피어의 개발 (I) - 열유도 상분리에 의한 Poly(ethylene-co-vinyl acetate) 마이크로스피어의 제조와 특성 -)

  • 이신희;김효정;박수민
    • Textile Coloration and Finishing
    • /
    • v.15 no.4
    • /
    • pp.57-64
    • /
    • 2003
  • Poly(ethylene-co-vinyl acetate)(EVA) microspheres were prepared by a thermally induced phase separation. The microsphere formation occurred by the nucleation and growth mechanism in the metastable region. The diluent used was toluene. The microsphere formation and growth was followed by the cloud point of the optical microscope measurement. The microsphere size distribution, which was obtained by SEM observation and particle size analyzer, became broader when the polymer concentration was higher, the content of vinyl acetate in EVA copolymer was higher, and the cooling rate of EVA copolymer solution was lower.

Comparison for the variable step-size FDICA with BSS algorithm in reverberant condition (반향환경에서의 가변 적응 상수를 이용한 FDICA와 여러 BSS 알고리즘과의 비교)

  • Park Keun-Soo;Park Jang-Sik;Son Kyung-Sik
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.05a
    • /
    • pp.369-373
    • /
    • 2005
  • This paper proposes a variable step size parameter method in frequency domain ICA (FDICA). The FDICA and the temporal analysis (TA) algorithm are experimented for blind source separation (BSS). This paper will compare the separation qualities of these two algorithms in various reverberation environments. Furthermore, it is shown that the proposed technique has the better separation performance than those of two methods especially in recorded data.

  • PDF

Study on multi-stage magnetic separation device for paramagnetic materials operated in low magnetic fields

  • F. Mishima;Aoi Nagahama;N. Nomura;S. Nishijima
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.3
    • /
    • pp.13-17
    • /
    • 2023
  • Magnetic separation technology for small paramagnetic particles has been desired for the volume reduction of contaminated soil from the Fukushima nuclear power plant accident and for the separation of scale and crud from nuclear power plants. However, the magnetic separation for paramagnetic particles requires a superconducting high gradient magnetic separation system applied, hence expanding the bore diameter of the magnets is necessary for mass processing and the initial and running costs would be enormous. The use of high magnetic fields makes safe onsite operation difficult, and there is an industrial need to increase the magnetic separation efficiency for paramagnetic particles in as low a magnetic field as possible. Therefore, we have been developing a magnetic separation system combined with a selection tube, which can separate small paramagnetic particles in a low magnetic field. In the previous technique we developed, a certain range of particle size was classified, and the classified particles were captured by magnetic separation. In this new approach, the fluid control method has been improved in order to the selectively classify particles of various diameters by using a multi-stage selection tube. The soil classification using a multi-stage selection tube was studied by calculation and experiment, and good results were obtained. In this paper, we report the effectiveness of the multi-stage selection tube was examined.

A Study on the Removal Efficiency of Heavy Metals in Daenam Mine Agricultural Soil Using Heavy metal Properties by Physical separation (대남광산 농경지 토양 내 중금속 특성에 따른 물리적 선별 처리효율에 관한 연구)

  • ParK, Chan Oh;Hong, Dong-Ho;Lee, Jai-Young;Lee, Young Jae;Lee, Jin-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.5
    • /
    • pp.46-55
    • /
    • 2013
  • The main objective was to evaluate the efficiencies of different separation techniques, such as gravity separation, magnetic separation, and aerial separation. Zinc and cadmium removal efficiencies by gravity separation and magnetic separation were 28.3~29.3% and 19.1%, respectively, and were higher than the efficiency obtained by aerial separation. Results showed that the combination of gravity separation and magnetic separation in series which was to maximize the removal efficiencies gave removal efficiency of 21.5~38.7% for zinc and 22.1~23.4% for cadmium. The mass of soil meeting the regulation standards for zinc and cadmium after retrieval from the combined separation process accounted for approximately 80% of the treated soil that would be reusable without the pre-treatment procedure as the neutralization process using in the soil washing method. Physical separation techniques utilizing heavy metal properties are the alternative method to remediate heavy-metal contaminated soils in environmental and economic aspects.

Change in the Characteristics of Particle Separation and Particle Size Distribution of Weathered Granite Soil from the Yecheon Area (Eastern South Korea) after Water Washing (물 세척한 예천지역 화강풍화토의 입자분리와 입도분포 변화 특성)

  • Kim, Suk-Joo
    • The Journal of Engineering Geology
    • /
    • v.32 no.2
    • /
    • pp.241-255
    • /
    • 2022
  • In this study, sieve analysis testing was performed on weathered granite soil from Yecheon (eastern South Korea) before and after water washing in accordance with the sieve analysis regulations of KS F 2302. The changes in particle separation and particle size distribution after washing with water were analyzed. Image analysis using an optical microscope revealed that soil particles were separated into smaller particles by water washing. The change in the particle size distribution curve was assessed using five index values. The increase in the fine particle fraction (<0.075 mm) was 13.67%, the increase in the 0.075-0.25 mm fraction was 19.44%, and the mean particle diameter (D50) decreased by 0.663 mm. In addition, the maximum passage width (BM) of the particle size distribution curve increased by 21.08% for the #30 sieve, and the moving area (A) of the particle size distribution curve was 69.28%·mm. These results suggest that washing with water is an effective way to prevent underestimation of the fine particle content in soil.

Comparison of Size-Exclusion Chromatography and Flow Field-Flow Fractionation for Separation of Whey Proteins

  • Kang, Da-Young;Moon, Jae-Mi;Lee, Seung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1315-1320
    • /
    • 2011
  • Whey protein (WP) is a mixture of proteins, and is of high nutritional values. WP has become an important source of functional ingredients in various health-promoting foods. In this study, size-exclusion chromatography (SEC) and asymmetrical flow field-flow fractionation (AsFlFFF) were used for separation and analysis of whey proteins. It was found that a lab-prepared WP from raw milk is mostly of ${\beta}$-lactoglobulin with small amount of higher molecular weight components, while a commercial whey protein isolate (WPI) powder contains relatively larger amount of components other than ${\beta}$-lactoglobulin, including IgG and protein aggregates. Results suggest that AsFlFFF provides higher resolution for the major whey proteins than SEC in their normal operation conditions. AsFlFFF could differentiate the BSA and Albumin, despite a small difference in their molecular weights, and also was able to separate much smaller amount of aggregates from monomers. It is noted that SEC was able to show the presence of low molecular weight components other than the major whey proteins in the WP samples, which AsFlFFF could not show, probably due to the partial loss of those low molecular weight species through the membrane.

Effects of Column Length and Particle Diameter on Phospholipid Analysis by Nanoflow Liquid Chromatography-Electrospray Ionization-Mass Spectrometry

  • Lee, Ju-Yong;Lim, Sang-Soo;Moon, Myeong-Hee
    • Mass Spectrometry Letters
    • /
    • v.2 no.3
    • /
    • pp.65-68
    • /
    • 2011
  • The effects of column length and particle size on the efficiency of separation and characterization of phospholipids (PLs) are investigated using nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MS-MS). Since PLs are associated with cell proliferation, apoptosis, and signal transduction, it is of increasing interests in lipidomics to establish reliable analytical methods for the qualitative and quantitative profiling of PLs related to biomarker development in adult diseases. Due to the complexity of PLs, the preliminary separation of PLs is necessary prior to MS analysis. In this study, length of capillary column and the particle size of reversed phase ($C_{18}$) packing materials are varied to find a reliable condition for the high speed and high resolution separation using 8 PL standard mixtures. From experiments, it was found that a capillary column of nLC-ESI-MS-MS analysis for PL mixtures can be minimized to a 5 cm long pulled tip column packed with 3 ${\mu}m$ $C_{18}$ particles without losing resolution.

DEVELOPMENT AND TESTING OF MEDIUM CAPACITY GRAIN FLOUR SEPARATOR

  • Kachru, Rajinder-P
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.966-978
    • /
    • 1993
  • A power operated 90.5 hp electric motor) grain flour separator was designed and developed for separation of grain (wheat, corn, chickpea and soybean) flour into various fractions based on the size of the particles of the product. The separator agitating mechanism, feed control, cylindrical separator unit and an eccentric mechanism. The machine was tested for wheat ( variety ; Sujata) flour separation into four fractions, viz ; semolina, Gr-I and II, flour (coarse) and white (fine) flour. Wheat samples (6.8% m.c., db) were first pearled by CIAE pearler for 15.8% bran removal . The pearled wheat grains were then milled for semolina by a burre mill. The product and machine characteristics were determined at different capacities varying from 24 kg/h to 143 kg/h. It was found that 76 kg/h capacity gave reasonably best results in terms of purity and recovery of semolina vis-a-vis the market product. The energy requirement of the machine at no-load was found to be 230 W and at load c nditions, it varied between 36.3-6.4 KJ per kg of fead seperation. The macine could be used by small flour millers small/medium size traders and retailers and other processors for making available various flour products of different particle size in the market for ready use of the consumers.

  • PDF