• Title/Summary/Keyword: Size of coating powder

Search Result 172, Processing Time 0.024 seconds

The Effect of Particle Size of Coating Powder and Coating Temperature on the Thickness of Coating Layer Formed on Metal Surface (Calorizing 처리에서 코팅분말의 입자크기 및 코팅온도가 금속표면에 형성된 코팅층의 두께에 미치는 영향)

  • Ha, Jin-Wook;Park, Hai-Woong
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1061-1065
    • /
    • 1999
  • The effect of particle size of coating powder and coating temperature on the thickness of coating layer formed on metal surface was studied by using XRD, SEM and EDXS. Coating powder was separated according to particle size by 3 steps and coating temperatures were varied from $950^{\circ}C$ to $980^{\circ}C$. Calorizing carried out at air and Ar conditions for 5 hrs, respectively. XRD result show that $Al_2O_3$ and AlN were formed during calorizing at air condition. The thickness and Al content of coating layer increased as the particle size of coating powder decreased and coating temperature increased.

  • PDF

A Study of Sliding Friction and Wear Properties for PTFE Layer coated on Steel (철강재료위 coating된 PTFE 막층의 미끄럼 마찰마모특성 연구)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.24 no.2
    • /
    • pp.96-103
    • /
    • 2008
  • PTFE is generally utilized as the form of composites with adding various fillers. The purpose of this paper lies on clarifying the friction and wear properties of the PTFE coating layer on steel. Especially, the effects of PTFE powder size for coating and surface roughness of the counter material on the properties are investigated. Sliding friction and wear tests are conducted at several sliding speeds by employing two types of PTFE coating layer using different powder sizes. One type of coating layer is composed of uniform fine powder, whereas the other type is made up of mixture powder of different sizes. As results, it is found that PTFE coating layer are effective to improve the wear resistance and to reduce the friction coefficient. It is clear that PTFE coating layers are abrasively removed by asperities of the counter material during sliding contact. However, PTFE coating layer with uniform fine powder shows somewhat better wear resistance than that with mixture powder of different sizes in low sliding speed region. It can be seen that the wear of the coating layer are drastically reduced because wear fragment from counter material are transferred to the coating layer. On the other hand, friction coefficient is shown not to be directly related with PTFE powder size in coating layer.

Characterization of Coating Layer formed on the Metal Surface by Calorizing (Calorizing(Aluminizing) 코팅 층의 표면특성 고찰)

  • 하진욱
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.1
    • /
    • pp.49-54
    • /
    • 2000
  • The effect of Particle size of coating Powder and coating temperature on the Properties of coating layer was studied by calorizing(or aluminizing). The surface properties of coating layer were fully characterized, using SEM and EDXS. Coating powders were separated according to the particle size by 3 steps and the coating temperature was varied from $950^{\circ}C$ to $980^{\circ}C$. Calorizing with pack cementation method carried under Ar atmosphere for 5 hrs. Results show that the thickness and Al content of coating layer increased as the size of coating powder decreased and coating temperature increased. And pores formed on the coating layer reduced and homogeneity of coating layer increased with smaller particle size of coating powder.

  • PDF

A Study on Pore Properties of SUS316L Powder Porous Metal Fabricated by Electrostatic Powder Coating Process (정전분체코팅 공정으로 제조된 SUS316L 분말 다공체의 기공 특성에 관한 연구)

  • Lee, Min-Jeong;Yi, Yu-Jeong;Kim, Hyeon-Ju;Park, Manho;Kim, Byoung-Kee;Yun, Jung-Yeul
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.415-419
    • /
    • 2018
  • Porous metals demonstrate not only excessively low densities, but also novel physical, thermal, mechanical, electrical, and acoustic properties. Thus, porous metals exhibit exceptional performance, which are useful for diesel particulate filters, heat exchangers, and noise absorbers. In this study, SUS316L foam with 90% porosity and $3,000{\mu}m$ pore size is successfully manufactured using the electrostatic powder coating (ESPC) process. The mean size of SUS316L powders is approximately $12.33{\mu}m$. The pore properties are evaluated using SEM and Archimedes. As the quantity of powder coating increases, pore size decreases from 2,881 to $1,356{\mu}m$. Moreover, the strut thickness and apparent density increase from 423.7 to $898.3{\mu}m$ and from 0.278 to $0.840g/cm^3$, respectively. It demonstrates that pore properties of SUS316L powder porous metal are controllable by template type and quantity of powder coating.

Fabrication and Pore Characteristics of Cu Foam by Slurry Coating Process

  • Park, Dahee;Jung, Eun-Mi;Yang, Sangsun;Yun, Jung-Yeul
    • Journal of Powder Materials
    • /
    • v.22 no.2
    • /
    • pp.87-92
    • /
    • 2015
  • Metallic porous materials have many interesting combinations of physical and geometrical properties with very low specific weight or high gas permeability. In this study, highly porous Cu foam is successfully fabricated by a slurry coating process. The Cu foam is fabricated specifically by changing the coating amount and the type of polyurethane foam used as a template. The processing parameters and pore characteristics are observed to identify the key parameters of the slurry coating process and the optimized morphological properties of the Cu foam. The pore characteristics of Cu foam are investigated by scanning electron micrographs and micro-CT analyzer, and air permeability of the Cu foam is measured by capillary flow porometer. We confirmed that the characteristics of Cu foam can be easily controlled in the slurry coating process by changing the microstructure, porosity, pore size, strut thickness, and the cell size. It can be considered that the fabricated Cu foams show tremendous promise for industrial application.

The Effect of Binder Content for the Pore Properties of Fe Foam Fabricated by Slurry Coating Process (슬러리 코팅 공정으로 제조된 Fe 폼의 기공 특성에 미치는 바인더 함량의 영향)

  • Choi, Jin Ho;Yang, Sangsun;Kim, Yang-Do;Yun, Jung-Yeul
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.439-444
    • /
    • 2013
  • Fe foam with above 90% porosity and 2 millimeter pore size was successfully fabricated by a slurry coating process. In this study, the binder contents were controlled to produce the Fe foam with different pore size, strut thickness and porosity. Firstly, the slurry was prepared by uniform mixing with Fe powders, distilled water and polyvinyl alcohol(PVA) as initial materials. After slurry coating on the polyurethane(PU) foam the sample was dried at $80^{\circ}C$. The PVA and PU foams were then removed by heating at $700^{\circ}C$ for 3 hours. The debinded samples were subsequently sintered at $1250^{\circ}C$ with holding time of 3 hours under hydrogen atmosphere. The three dimensional geometries of the obtained Fe foams with open cell structure were investigated using X-ray micro CT(computed tomography) as well as the pore morphology, size and phase.

The Effect of Fe and Fe2O3 Powder Mixing Ratios on the Pore Properties of Fe Foam Fabricated by a Slurry Coating Process (슬러리 코팅 공정으로 제조된 Fe 폼의 기공 특성에 미치는 Fe 및 Fe2O3 분말의 혼합 비율의 영향)

  • Choi, Jin Ho;Jeong, Eun-Mi;Park, Dahee;Yang, Sangsun;Hahn, Yoo-Dong;Yun, Jung-Yeul
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.266-270
    • /
    • 2014
  • Metal foams have a cellular structure consisting of a solid metal containing a large volume fraction of pores. In particular, open, penetrating pores are necessary for industrial applications such as in high temperature filters and as a support for catalysts. In this study, Fe foam with above 90% porosity and 2 millimeter pore size was successfully fabricated by a slurry coating process and the pore properties were characterized. The Fe and $Fe_2O_3$ powder mixing ratios were controlled to produce Fe foams with different pore size and porosity. First, the slurry was prepared by uniform mixing with powders, distilled water and polyvinyl alcohol(PVA). After slurry coating on the polyurethane(PU) foam, the sample was dried at $80^{\circ}C$. The PVA and PU foams were then removed by heating at $700^{\circ}C$ for 3 hours. The debinded samples were subsequently sintered at $1250^{\circ}C$ with a holding time of 3 hours under hydrogen atmosphere. The three dimensional geometries of the obtained Fe foams with an open cell structure were investigated using X-ray micro CT(computed tomography) as well as the pore morphology, size and phase. The coated amount of slurry on the PU foam were increased with $Fe_2O_3$ mixing powder ratio but the shrinkage and porosity of Fe foams were decreased with $Fe_2O_3$ mixing powder ratio.

Shell Powder Coating on the Surface of Concrete by Geopolymer Cement (지오폴리머 시멘트를 이용한 콘크리트 표면의 패각 분말 코팅)

  • Kim, Gab-Joong;Han, Hyun-Geun;Seo, Dong-Seok;Lee, Jong-Kook
    • Korean Journal of Materials Research
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • Geopolymer materials are attractive as inorganic binders due to their superior mechanical and eco-friendly properties. In the current study, geopolymer-based cement was prepared using aluminosilicate minerals from fly-ash with KOH as an alkaline-activator and $Na_2SiO_3$ as liquid glass. Then, calcium carbonate powder from a clam shell was mixed with the geopolymer and the mixture was coated on a concrete surface to provide points of attachment for environmental organisms to grow on the geopolymers. We investigated the effect of the shell powder grain size on the microstructure and bonding property of the geopolymers. A homogeneous geopolymer layer coated well on the concrete surface via aluminosilicate bonding, but the adhesiveness of the shell powder on the geopolymer cement was dependent on the grain size of the shell powder. Superior adhesive characteristics were shown in the shell powder of large grain size due to the deep penetration into the geopolymer by their large weight. This kind of coating can be applied to the adhesiveness of eco-materials on the surface of seaside or riverside blocks.

Coating of Cobalt Over Tungsten Carbide Powder by Wet Chemical Reduction Method

  • Hong, Hyun-Seon;Yoon, Jin-Ho
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.93-96
    • /
    • 2014
  • Cobalt coated tungsten carbide-cobalt composite powder has been prepared through wet chemical reduction method. The cobalt sulfate solution was converted to the cobalt chloride then the cobalt hydroxide. The tungsten carbide powders were added in to the cobalt hydroxide, the cobalt hydroxide was reduced and coated over tungsten carbide powder using hypo-phosphorous acid. Both the cobalt and the tungsten carbide phase peaks were evident in the tungsten carbide-cobalt composite powder by X-ray diffraction. The average particle size measured via scanning electron microscope, particle size analysis was around 380 nm and the thickness of coated cobalt was determined to be 30~40 nm by transmission electron microscopy.

Effect of Oxide Particles Addition to Powder Coating on Corrosion Resistance of Steel Used as Marine Equipments (조선·해양 기자재용 강재의 내식성에 미치는 분체도장 중 산화물 첨가의 영향)

  • Park, Jin-seong;Ryu, Seung Min;Jeong, Yeong Jae;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.100-107
    • /
    • 2020
  • The demand for powder-coated steel used in the marine industry is increasing owing to their superior corrosion resistance. However, the powder coatings used in commercial products can deteriorate easily by the penetration of brine. In an attempt to suppress brine penetration into the powder coating and significantly increase the corrosion resistance, three types of oxide particles were added to the coating. Electrochemical impedance spectroscopy tests in 3.5% NaCl solution were performed to evaluate the corrosion behaviors of the powder coating with oxide particles. The results showed that the addition of SiO2 particles to a powder coating severely decreased the corrosion resistance due to the easy detachment of agglomerated SiO2 particles with a coarse size from the coating layer. In contrast, the TiO2 and SnO2-added coatings showed better corrosion resistance, and the TiO2-added coating performed best in the test conducted at room temperature. However, conflicting results were obtained from tests conducted at a higher temperature, which may be attributed to the effective suppression of brine penetration by the fine SnO2 particles uniformly distributed in the coating.