• 제목/요약/키워드: Size and Number Concentration

검색결과 479건 처리시간 0.026초

제한된 공간내 분무의 유동특성 실험 (Experimental Study on the Flow Characteristic of a Confined Ppray)

  • 정선재;이상용
    • 대한기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.1011-1018
    • /
    • 1992
  • A series of experiment has been performed on the spray characteristics in a cylindrical confined space with the injection pressure taken as a parameter. By using a single-hole patternator and the Malvern particle sizer, the spray mass flux, drop size and volume concentration distributions along the radial and axial directions were obtained ; the line-of- sight data by Malvern particle sizer have been converted to the ring-of-sight data by using the tomographical transformation techniqe. The experimental results show that, due to the restriction on the ambient gas entrainment by the wall boundary, the effective spray angle is increasing. The spray drops were measured to be smaller in the confined space because of a large number of floating small drops by recirculation of the gas phase and the breakup of large drops by the wall collision. Also the details on the flow behavior of the confined spray are discussed.

Distribution of Airborne Microorganisms in Yellow Sands of Korea

  • Choi, Dae-Sung;Park, Yong-Keun;Oh, Sang-Kon;Yoon, Hee-Ju;Kim, Jee-Cheon;Seo, Won-Jun;Cha, Seung-Hee
    • Journal of Microbiology
    • /
    • 제35권1호
    • /
    • pp.1-9
    • /
    • 1997
  • Distribution of airborne microorganisms was determined with two different types of air samplers, the Anderson cascade sampler and the Aerobioscope sampler, in the vicinity of Taejon. The size distribution of particles carrying bacteria and fungi was concurrently measured. The concentration of detected viable airborne particles was greatly varied. It was observed that the number of microbial particles increased in April and October. The most isze o particles carrying bacteria was larger than 4.7 .mu.m in mean aerodiameter, which made up 69.8% of the total particle fraction. About 63.2% of fungi-carrying particles were smaller than 4.7 .mu.m in aerodiameter. The distribution of particles on Yellow Sand Phenomena days was also analyzed. The number of fine particles having mass median aero-diameter from 1.0 to 10.mu.m increased on Yellow Sand Phenomena days to about 6 times that on normal days and the n umber of colony forming unit (CFU/$\textrm{m}^3$) of airborne bacteria also increased by 4.3 times in April. The reuslts from the Anderson sampler showed that the concentration of bacteria increased greatly on the fraction of fine particles ranging from 0.6 $\mu$m to 4.7 $\mu$m in diameter. Unlike the increase in bacterial floraon Yellow Sand Phenomena days, the fungal concentration slightly decreased and showed a normal size distribution parttern. This study suggests that a long-range transmission of bacteria results form bacteria adsorbing onto the fine particles during the Yellow Sand Phenomena.

  • PDF

Effects of Neutral Detergent Fiber Concentration and Particle Size of the Diet on Chewing Activities of Dairy Cows

  • Moon, Y.H.;Lee, S.C.;Lee, Sung S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권11호
    • /
    • pp.1535-1540
    • /
    • 2004
  • Six dry Holstein cows were used to evaluate the effect of dietary neutral detergent fiber (NDF) concentration and particle size (PS) on chewing activity. Treatments were arranged in a 3$\times$3 factorial design; total mixed rations contained three NDF concentrations (26, 32, 38%) and three PS (1.0, 1.5, 2.0 cm). NDF levels and particle sizes of diets were adjusted by formulating rate and cutting length of alfalfa hay and rice straw. Cows were fed twice daily at 90% of ad libitum feed intake throughout the experiment. Chewing activity was positively associated with NDF concentration, but not significantly affected by PS of diet. Eating time per unit of NDF intake was affected by PS rather than NDF concentration of diet. Time spent ruminating per unit DM or NDF intake increased with increasing NDF concentration of diet, but was not affected by PS. As the PS of diet increased, the eating time per day increased, but the rumination time decreased. In addition, as the number of rumination bolues decreased the rumination duration increased as well as the chews per bolus. The regression equation induced from relationships of NDF concentrations (NDF, %) and particle sizes (PS, cm) of diet on roughage value index (RVI, min of chewing time/kg DMI) was as follows. RVI=-19.672+1.44$\times$NDF+5.196$\times$PS, ($R^{2}$=0.81).

도로터널 임계풍속 산정에 격자개수 및 화원의 크기와 위치가 미치는 영향 (The effect of grid number and the location and size of the fire source on the critical velocity in a road tunnel fire)

  • 이승철;김상일
    • 한국터널지하공간학회 논문집
    • /
    • 제14권3호
    • /
    • pp.183-195
    • /
    • 2012
  • 본 연구에서는 도로터널 내 화재 시 임계풍속 산정을 위해 3차원 전산유체역학 기법을 이용하여 격자수, 그리고 화원의 크기와 위치에 따라 그 결과를 비교 분석하였다. 본 대상터널에서 1차원 식으로 산출된 임계풍속은 터널 높이 대신 수력지름을 적용한 경우 2.22 m/s로 산정되었다. 임계풍속 2.25 m/s를 적용하여 격자수에 따른 6가지 수치해석 결과, 격자수에 따라 역류의 위치와 온도, CO 농도 값이 상이하게 나타났으며, 본 대상터널의 경우는 약 84만개 격자수를 사용한 case 1이 적절한 격자임을 알 수 있었다. 또한 화원의 크기와 위치에 따른 수치해석 결과, 화원의 크기와 위치에 따라 상이한 기류분포, 온도분포 및 CO농도분포를 나타내어 임계풍속에 영향을 미친다는 것을 확인했다. 이것은 열교환 면적과 위치에 기인된다고 판단된다. 향후 실제 실험결과와 상세히 비교하여 3차원 수치해석의 격자 의존성과 화원의 위치 및 크기를 반드시 확인해야 할 것으로 판단된다.

Influence of pH, Emulsifier Concentration, and Homogenization Condition on the Production of Stable Oil-in-Water Emulsion Droplets Coated with Fish Gelatin

  • Surh, Jeong-Hee
    • Food Science and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.999-1005
    • /
    • 2007
  • An oil-in-water (O/W) emulsion [20 wt% com oil, 0.5-6.0 wt% fish gelatin (FG), pH 3.0] was produced by high pressure homogenization, and the influence of pH, protein concentration, and homogenization condition on the formation of FG-stabilized emulsions was assessed by measuring particle size distribution, electrical charge, creaming stability, microstructure, and free FG concentration in the emulsions. Optical microscopy indicated that there were some large droplets ($d>10\;{\mu}m$) in all FG-emulsions, nevertheless, the amount of large droplets tended to decrease with increasing FG concentration. More than 90% of FG was present free in the continuous phase of the emulsions. To facilitate droplet disruption and prevent droplet coalescence within the homogenizer, homogenization time was adjusted in O/W emulsions stabilized by 2.0 or 4.0 wt% FG. However, the increase in the number of pass rather promoted droplet coalescence. This study has shown that the FG may have some limited use as a protein emulsifier in O/W emulsions.

Mathematical Model for a Three-Phase Fluidized Bed Biofilm Reactor in Wastewater Treatment

  • Choi, Jeong-Woo;Min, Ju-Hong;Lee, Won-Hong;Lee, Sang-Back
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제4권1호
    • /
    • pp.51-58
    • /
    • 1999
  • A mathematical model for a three phase fluidized bed bioreactor (TFBBR) was proposed to describe oxygen utilization rate, biomass concentration and the removal efficiency of Chemical Oxygen Demand (COD) in wastewater treatment. The model consisted of the biofilm model to describe the oxygen uptake rate and the hydraulic model to describe flow characteristics to cause the oxygen distribution in the reactor. The biofilm model represented the oxygen uptake rate by individual bioparticle and the hydrodynamics of fluids presented an axial dispersion flow with back mixing in the liquid phase and a plug flow in the gas phase. The difference of setting velocity along the column height due to the distributions of size and number of bioparticle was considered. The proposed model was able to predict the biomass concentration and the dissolved oxygen concentration along the column height. The removal efficiency of COD was calculated based on the oxygen consumption amounts that were obtained from the dissolved oxygen concentration. The predicted oxygen concentration by the proposed model agreed reasonably well with experimental measurement in a TFBBR. The effects of various operating parameters on the oxygen concentration were simulated based on the proposed model. The media size and media density affected the performance of a TFBBR. The dissolved oxygen concentration was significantly affected by the superficial liquid velocity but the removal efficiency of COD was significantly affected by the superficial gas velocity.

  • PDF

분진의 개수농도 및 질량농도에 입각한 서울시 지하철 역사 내 오염원의 기여도 결정 (Determination of Source Contribution Based on Aerosol Number and Mass Concentration in the Seoul Subway Stations)

  • 최형욱;황인조;김신도;김동술
    • 한국대기환경학회지
    • /
    • 제20권1호
    • /
    • pp.17-31
    • /
    • 2004
  • The subway play an important part in serious traffic problems. However, because subway system is a closed environment, many serious air pollution problems occurred in subway stations and injured passenger's health. Therefor, it is a necessary to identify sources and to estimate pollutant sources in order to protect passenger's health and to keep clean subway environment. The purpose of this study was to analyze a air quality in the subway stations and to apply a new receptor methodology for quantitatively estimate of PM10 sources. In this study, the size distributions of particulate matters has been measured by using Aerosizer LD (U.S.A., API, Inc.). It's real time measurement capability of time-of-flight technique offers a significant advantage of user convenience and air pollution management. Also, the mass concentrations of PM 10 has been measured by using mini-vol portable sampler (U.S.A., Airmetrics Co.). The sampling performed in Seoul subway stations during the period of February 2000 and April 2000. The number distribution data used in this study consisted of 26 raw data sets in the Jongno-sam-ga station. Correlation Analysis can be used in subway stations for source separation and identification. Then, number contribution from each source is determined by the particle number balance (PNB). The mass concentration data used in this study consisted of 31 raw data in the 8 different stations. The mass contributions of PM10 sources in the concourse by using PMF/CMB model.

Anodic oxidation behavior of AZ31 Mg alloy in aqueous solution containing various NaF concentrations

  • Moon, Sungmo;Kwon, Duyoung
    • 한국표면공학회지
    • /
    • 제55권4호
    • /
    • pp.196-201
    • /
    • 2022
  • This paper deals with anodic oxidation behavior of AZ31 Mg alloy in aqueous solutions containing various NaF concentrations from 0.01 M to 1 M. Three different voltage-time curves and anodic oxide formation behaviors appeared with concentration of NaF in deionized water. When NaF concentration is lower than 0.02 M, the voltage of AZ31 Mg alloy increased linearly and then reached a steady-state value more than 200 V, and large size pits and thin oxide layer were formed. When NaF concentration is between 0.05 M and 0.1 M, the voltage of AZ31 Mg alloy showed large periodic fluctuations of about 30 ~ 50 V around more than 200 V and large number of small particles were observed. If NaF concentration is higher than 0.2 M, PEO films can be formed without visible arcs under solution pH 6.5 ~ 7.5 by F- ions without help of OH- ions.

이산화탄소 농도가 영지버섯균의 균사생장과 자실체원기 유도에 미치는 영향 (Effect of concentrated carbon dioxide exposure on the mycelial growth and fruit body initiation of Ganoderma lucidum)

  • 서건식;스즈키 아키라
    • 한국버섯학회지
    • /
    • 제2권2호
    • /
    • pp.45-48
    • /
    • 2004
  • The effect of $CO_2$ concentration (500, 3,000, $6,000{\mu}{\ell}/{\ell}$) on the mycelial growth and fruit body primordium formation of Ganoderma lucidum on nutrient agar medium was examined. Optimum $CO_2$ concentration for vegetative growth was above $3,000{\mu}{\ell}/{\ell}$. Fruit body initiation was accelerated at higher than $3,000{\mu}{\ell}/{\ell}$ $CO_2$ exposure but the maximum number and size of primordia, and primordium color were not influenced by $CO_2$ concentrations. Whereas each atypical fruiting structure forming stock culture showed different fruiting time under each concentration of $CO_2$ exposure.

  • PDF

Emulsion rheology and properties of polymerized high internal phase emulsions

  • Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • 제18권4호
    • /
    • pp.183-189
    • /
    • 2006
  • High internal phase emulsions are highly concentrated emulsion systems consisting of a large volume of dispersed phase above 0.74. The rheological properties of high internal phase water-in-oil emulsions were measured conducting steady shear, oscillatory shear and creep/recovery experiments. It was found that the yield stress is inversely proportional to the drop size with the exponent of values between 1 and 2. Since the oil phase contains monomeric species, microcellular foams can easily be prepared from high internal phase emulsions. In this study, the microcellular foams combining a couple of thickeners into the conventional formulation of styrene and water system were investigated to understand the effect of viscosity ratio on cell size. Cell size variation on thickener concentration could be explained by a dimensional analysis between the capillary number and the viscosity ratio. Compression properties of foam are important end use properties in many practical applications. Crush strength and Young's modulus of microcellular foams polymerized from high internal phase emulsions were measured and compared from compression tests. Of the foams tested in this study, the foam prepared from the organoclay having reactive group as an oil phase thickener showed outstanding compression properties.