• Title/Summary/Keyword: Size Analyzer

Search Result 629, Processing Time 0.03 seconds

Experimental Analysis on Particle Growth m TEOS/O2 Plasma Reactor (TEOS/O2 플라즈마 반응기에서 미립자 성장에 대한 실험적 분석)

  • Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.149-153
    • /
    • 2001
  • A study on the particle growth in $TEOS/O_2$ plasma was performed, and particle size and its distribution was measured by the electrical aerosol analyzer (EAA), light scattering particle size analyzer and the particle size was also determined by SEM. The effects of process variables such as total gas flow rate, reactor pressure, supplied power and initial reactant concentration on the particle growth were investigated. From the EAA results, the particle size distribution is divided into three groups of the cluster size and the small and large size particles. The particle size distribution measured by the light scattering particle size analyzer becomes bimodal, because the cluster size particles smaller than 20 nm in diameter cannot be detected by the light scattering particle size analyzer. The size of particles measured by the light scattering particle size analyzer is in good agreements with those by the SEM. Also we could understand that the particle formation is very sensitive to the changes of reactor pressure and reactant concentration. As the total gas flow rate increases, the particle size decreases because of the shorter residence time. As the reactor pressure, or the reactant concentration increases, the particle concentration increases and the particles grow more quickly by the faster coagulation between particles.

  • PDF

Study on the Contribution of Mixing Effects in Sampling Tube and Condensation Nuclei Counter(CNC) to the measurement of size distribution obtained using Differential Mobility Analyzer and CNC (Differential Mobility Analyzer(DMA)와 Condensation Nuclei Counter(CNC)를 이용한 입자크기 분포 측정에서 샘플링 튜브와 CNC에서의 혼합 효과가 입자 크기 분포 측정에 미치는 영향에 관한 연구)

  • Lee, Youn-Soo;Ahn, Kang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.104-109
    • /
    • 2001
  • The time to measure the size distribution using Condensation Nuclei Counter(CNC) and Differential Mobility Analyzer(DMA) can be shortened by classifying particles ramping the DMA voltage exponentially and continuously. In measurement, particles sampled at different time are mixed together going through sampling tube and CNC. Because the size distribution is inversed by using detector responses to sampling time intervals in this accelerated method, the mixing effects give inversion errors to the size distribution. The mixing effects can be considered by appling the transfer function with mixing effects to the data inversion. The inversion considering this effects gives birth to the size distribution shifted to the opposite direction of the size scanning.

  • PDF

Effect of Different Milling Methods on Distribution of Particle Size of Rice Flours (제분방법이 쌀가루의 입자크기에 미치는 영향)

  • Kum, Jun-Seok;Lee, Sang-Hyo;Lee, Hyun-Yu;Kim, Kil-Hwan;Kim, Young-In
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.541-545
    • /
    • 1993
  • Two different methods (Sieve shaker, Elzone particle size analyzer) were used to investigate rice flour particle size obtained by various milling method. Results of Elzone particle size analyzer were more effective than Sieve shaker in determining particle size, and the distribution of particle size of rice flours was affected by the type of the milling methods used. A rice flour, prepared in a Pin mill had a particle size range of $60{\sim}500$ mesh, and 30.38% of the sample was in the particle size range $200{\sim}270$ mesh. A rice flour, prepared in a Colloid mill had a particle size range of $40{\sim}500$ mesh and more of flour particles appeared in the range $140{\sim}200$ mesh than any other particle size. A rice flour, prepared in a Micro mill had a particle size range of $140{\sim}500$ mesh, and 41.62% of the sample was in the particle size range over 500 mesh. A rife flour, prepared in a Jet mill had a finer flour particle size was over the particle size range 500 mesh. The finer rice flour gave the highest L value and the lowest a value. The wet-milled flour particles were observed as a cluster of starch granules and the particles of rice flour (dry-milling) were observed as fragment of rice grains. Scanning Electron Photomicrographs revealed that visual differences in structure between milling methods, and similar results with Elzone particle size analyzer method in particle size.

  • PDF

Development of Portable Colorimeter and Size Analyzer by Using Smartphone (스마트폰을 이용한 휴대용 색차계와 입도계 개발)

  • Yoo, Sanggyu;Park, Hyunmin;Kim, Hyungu;Kim, Sayeom;Song, Simon
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.3
    • /
    • pp.19-23
    • /
    • 2019
  • The purpose of this research is to develop a facile measurement system for colorimetric analysis for zinc powder and size analyzer for zeolite particles in order to reduce the process time for their characteristic analysis. We present facile smartphone-based analysis methods to measure and estimate the size of zinc power by using colorimeteric method and the size of zeolite particles by using ImageJ program which is an open-source program. The results show a possibility of our methods to replace the previous professional analysis processes with them.

Understanding Size Selection of Nanoparticles Using a Differential Mobility Analyzer (DMA) and Its Performance Enhancement (DMA를 이용한 나노 입자의 크기 분류법에 대한 이해와 성능개선)

  • Kim, Seok-Hwan;Kim, Sang-Wook;Lee, Donggeun
    • Particle and aerosol research
    • /
    • v.10 no.1
    • /
    • pp.33-43
    • /
    • 2014
  • A differential mobility analyzer (DMA) has been widely used as a standard tool for classifying nanoparticles with a certain size. More recently, several new types of DMA have been tested in an attempt to produce size-monodisperse nanoparticles. It is a bit surprise to see how simple the working theory of the DMA is. Although the theory was demonstrated quite successful, no one can guarantee whether the theory still works in another geometry of the DMA. In this regard, we first investigated the validity of the theory under various working conditions and then moved to check the validity upon minor change in its design. For the valid test, we compared the results with those obtained from a computational fluid dynamics.

Recent Development of Differential Mobility Analyzers For Size-Classification of Nanoparticles and Their Applications to Nanotechnologies

  • Seol, Kwang-Soo;Yoshimichi Ohki;Kazuo Takeuchi
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.2
    • /
    • pp.39-44
    • /
    • 2004
  • The present paper gives a review of the recent development of a differential mobility analyzer (DMA) available for both particle size measurements and production of monodisperse particles in the nanometer range. Operating principles of a general DMA are introduced as well as characteristics of highly functional DMAs such as those capable of classifying particles in a measurement range as broad as 1-1000nm at low pressures. Some examples of DMA applications are also described.

Effect of Grinding Methods on Particle Size and Crystalline Structure of Copper Phthalocyanine (분쇄방법에 따른 구리프탈로시아닌 입자크기 및 결정구조 변화)

  • Lee, Jeong Se;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.41-47
    • /
    • 2007
  • Crude copper phthalocyanine (Cupc) was synthesized by Wyler process, then grounded using various methods such as acid pasting, kneader, attritor and SC-mill. Particle size, shape and crystalline structure were compared and evaluated after particle size reductions. Cupcs prepared by acid pasting and kneader methods that are excellent manufacturing processes in industry were used as our standards. Particle properties of Cupcs prepared either by attritor or by SC-mill were compared with particle size analyzer, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Particle size analyzer and SEM were used to analyze the variation of particle sizes of Cupc with milling time. Particle size was initially decreased up to the 90 min of milling time, thereafter it reversely began to increase in case of SC-mill. Cupc obtained from dry milling with attritor displayed strong cohesion so that particle size was not possible to determine with particle size analyzer. However, the optimum milling time was indirectly approximated from the analysis of XRD peak intensity.

Influences of Pretreatment Procedures, and Refractive and Absorptive Indices in Grain Size Analysis of Sandy Samples by Laser Diffraction Grain Size Analyzer (레이저 회절 입도분석기를 이용한 사질 시료의 입도분석에 있어서 전처리 및 굴절율과 흡수율의 영향)

  • Yoon, Soon-Ock;Hwang, Sangill;Park, Chung-Sun
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.6
    • /
    • pp.819-836
    • /
    • 2013
  • This study aims to compare the inf luences of pretreatment procedures, and refractive and absorptive indices in grain size analysis of sandy samples collected from Sagot Beach, Baengnyeong Island by laser diffraction grain size analyzer, and propose the proper procedure and method in grain size analysis of sandy samples. The analyzed samples do not indicate large differences by the three pretreatment procedures applied in this study. However, the organic matters should be removed by hydrogen peroxide, because the samples without hydrogen peroxide pretreatments show differences from the samples with hydrogen peroxide pretreatments. The results with a refractive index of 1.3 and absorptive index less than 0.01 also indicate differences from those with other indices. Compared to the differences in fine samples, these differences are not significant and thus, it can be concluded that the results in grain size analysis of sandy samples are not greatly influenced by the refractive and absorptive indices. However, other indices out of the ranges should be applied.

  • PDF

Component-Based VHDL Analyzer for Reuse and Embedment (재사용 및 내장 가능한 구성요소 기반 VHDL 분석기)

  • 박상헌;손영석
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1015-1018
    • /
    • 2003
  • As increasing the size and complexity of hard-ware and software system, more efficient design methodology has been developed. Especially design-reuse technique enables fast system development via integrating existing hardware and software. For this technique available hardware/software should be prepared as component-based parts, adaptable to various systems. This paper introduces a component-based VHDL analyzer allowing to be embedded in other applications, such as simulator, synthesis tool, or smart editor. VHDL analyzer parses VHDL description input, and performs lexical, syntactic, semantic checking, and finally generates intermediate-form data as the result. VHDL has full-features of object-oriented language such as data abstraction, inheritance, and polymorphism. To support these features special analysis algorithm and intermediate form is required. This paper summarizes practical issues on implementing high-performance/quality VHDL analyzer and provides its solution that is based on the intensive experience of VHDL analyzer development.

  • PDF