• Title/Summary/Keyword: Site-directed mutagenesis

Search Result 263, Processing Time 0.023 seconds

Enhancement of the Thermostability of a Fibrinolytic Enzyme from Bacillus amyloliquefaciens CH51 (Bacillus amyloliquefaciens CH51이 생산하는 혈전용해효소의 열안정성 개선)

  • Kim, Jieun;Choi, Kyoung-Hwa;Kim, Jeong Hwan;Song, Young-Sun;Cha, Jaeho
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.15-23
    • /
    • 2013
  • AprE51 from Bacillus amyloliquefaciens CH51 is a 27 kDa subtilisin-like protease with fibrinolytic activity. AprE51-6 showing increased catalytic activity was produced previously. To enhance the thermostability of AprE51-6, 2 residues, Gly-166 and Asn-218 based on B. subtilis subtilisin E were mutated by site-directed mutagenesis. The results of the mutational analysis showed that substitution of arginine for Gly-166 (AprE51-7) increased the fibrinolytic activity 1.8-fold. An N218S mutant (AprE51-8) also increased the fibrinolytic activity up to 4.5-fold in a fibrin plate assay. Purified AprE51-7 and AprE51-8 mutants had a 1.9- and a 2.5-fold higher $k_{cat}$, respectively, and a 2.1-1.9-fold lower $K_m$, respectively. This resulted in a 3.8- and a 4.7-fold increase in catalytic efficiency ($k_{cat}/K_m$), respectively, relative to that of wild-type AprE51. AprE51-8 had a broader pH range than AprE51-6 and nattokinase, especially at an alkaline pH value. In addition, AprE51-8 showed higher thermostability than AprE51-6 at $60^{\circ}C$. The half-lives of AprE51-7 and AprE51-8 at $50^{\circ}C$ were 21.5 and 27.3 min, respectively, which are 2.0 and 2.6 times longer, respectively, than that of the wild-type AprE51.

On the Secretion and Functions of Equine Chorionic Gonadotropin (말의 융모성 성선자극 호르몬의 분비와 기능)

  • Min, K.S.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.2
    • /
    • pp.125-142
    • /
    • 2000
  • 13). Analysis of a purified preparation of eCG revealed that its $\beta$ -subunit consists of 149 amino acids, which was confirmed by the molecular cloning of its cDNA. There seem to be at least four to six, or even as many as 11, O-glycosylation sites on the extended C-tenninal region of the eCG $\beta$-subunit. Interestingly, eCG is a unique member of this family, as it appear to be a single molecule that possesses both LH- and FSH-like activities. Using the cDNA prepared from mRNA extracted from equine placental and pituitary tissues, we cloned the cDNA of eCG $\alpha$- and $\beta$ -subunits and eFSH $\beta$ -subunit. The mRNA expression of each subunit seems to be independently regulated, which may account for differences in the quantities of $\alpha$ - and $\beta$ -subunits in the placenta and pituitary. Thus, eCG is a distinct molecule from the view points of its biological function and glycoresidue structures. Recombinant eCGs including the mutants which lack oligosaccharides will be useful tools for analyzing the structure-function relationships of gonadotropins in the horse as well as other species. Similar experiments will also clarify the proposed structure and biological functions for the glycoprotein hormones. These experimental are now possible, and hopefully a resolution of the existing controversy will be forthcoming in the near future.

  • PDF

Analysis of Amino Acid Residues Affecting the Activity of QscR, a Quorum Sensing Receptor of Pseudomonas aeruginosa (녹농균(Pseudomonas aeruginosa)의 쿼럼 센싱 수용체인 QscR의 활성에 영향을 미치는 아미노산 잔기 분석)

  • Park, Su-Jin;Kim, Soo-Kyoung;Lee, Joon-Hee
    • Korean Journal of Microbiology
    • /
    • v.48 no.3
    • /
    • pp.180-186
    • /
    • 2012
  • Pseudomonas aeruginosa, a Gram-negative bacterium, is an ubiquitous and opportunistic human pathogen, which expresses many virulence factors through quorum sensing (QS) regulation. QscR, one of the QS signal receptors of P. aeruginosa, has unique features that make it possible to distinguish QscR from other QS receptors. In the present study, we focused on amino acid residues responsible for such a broad signal specificity of QscR. Thus we constructed mutant QscRs: $QscR_{T72I}$, $QscR_{R132M}$, and $QscR_{T140I}$ by substituting $72^{nd}$ threonine, $132^{nd}$ arginine, and $140^{th}$ threonine residues with isoleucine, methionine, and isoleucine, respectively by site-directed mutagenesis. When we examined the activity of these mutant QscRs, $QscR_{R132M}$ failed to respond to N-3-oxododecanoyl homoserine lactone (3OC12-HSL), but $QscR_{T72I}$ and $QscR_{T140I}$ remained the ability to respond to 3OC12-HSL despite much reduction of the sensitivity. When we treated a variety of acyl-HSLs with different structure, $QscR_{T72I}$ and $QscR_{T140I}$ showed better responsiveness to N-decanoyl HSL (C10-HSL) or N-dodecanoyl HSL (C12-HSL) that has no oxo-moiety at $3^{rd}$ carbon of acyl group than to 3OC12-HSL, and $QscR_{R132M}$ showed no responsiveness to any acyl-HSLs tested here. In addition, $QscR_{T72I}$ and $QscR_{T140I}$ were inhibited by 5f, a QscR inhibitor as similarly as wild type QscR was. These results suggest that while the $130^{th}$ arginine is crucial in both activity and acyl-HSL binding of QscR, the $72^{nd}$ and $140^{th}$ threonines are important in the activity, but they are little responsible for the discrimination of acyl-HSLs or competitive inhibitor.