• Title/Summary/Keyword: Siphon Breaker Simulation Program(SBSP)

Search Result 2, Processing Time 0.015 seconds

Experimental investigation on small scale siphon breaker (소규모 사이펀 차단기에 대한 실험적 연구)

  • Ji, Dae-Yun;Kim, Sung hoon;Lee, Kwon-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.1-8
    • /
    • 2018
  • In this study, a small-scale siphon breaker experimental facility was designed to examine the validity of the Siphon Breaker Simulation Program (SBSP). To design the experimental facility, the simulation results of the C factor, Chisholm B coefficient, and Undershooting Height (UH) were obtained by SBSP. The major parts of the experimental facility were the upper tank, lower tank, downcomer, and Siphon Breaker Line (SBL). The area of the Upper tank was $0.09-m^2$ with a height of 0.65-m. The height of the downcomer was 1.6-m. Pressure transmitters and an electronic scale were used to obtain the experimental results. The experimental variables were the sizes of Loss of Coolant Accident (LOCA) and SBL. The experimental results were analyzed by UH. The SBSP well predicted the UH with an error of 2.5%. Overall, it is possible to design siphon breakers with various scales using SBSP.

Development and Application of Siphon Breaker Simulation Program (사이펀 차단기 시뮬레이션 프로그램의 개발 및 활용)

  • Lee, Kwon-Yeong;Kim, Wan-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.346-353
    • /
    • 2016
  • In the design conditions of some research reactors, the siphon phenomenon can cause continuous efflux of water during pipe rupture. A siphon breaker is a safety device that can prevent water efflux effectively. However, the analysis of the siphon breaking is complicated because many variables must be included in the calculation process. For this reason, a simulation program was developed with a user-friendly GUI to analyze the siphon breaking easily. The program was developed by MFC programming using Visual Studio 2012 in Windows 8. After saving the input parameters from a user, the program proceeds with three steps of calculation using fluid mechanics formulas. Bernoulli's equation is used to calculate the velocity, quantity, water level, undershooting, pressure, loss coefficient, and factors related to the two-phase flow. The Chisholm model is used to predict the results from a real-scale experiment. The simulation results are shown in a graph, through which a user can examine the total breaking situation. It is also possible to save all of the resulting data. The program allows a user to easily confirm the status of the siphon breaking and would be helpful in the design of siphon breakers.