• 제목/요약/키워드: Sinusoidal Flow

검색결과 151건 처리시간 0.025초

Robust State Estimation Based on Sliding Mode Observer for Aeroelastic System

  • Jeong In-Joo;Na Sungsoo;Kim Myung-Hyun;Shim Jae-Hong;Oh Byung-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.540-548
    • /
    • 2005
  • This paper concerns the application and demonstration of sliding mode observer for aeroelastic system, which is robust to model uncertainty including mass and stiffness of the system and various disturbances. The performance of a sliding mode observer is compared with that of a conventional Kalman filter to demonstrate robustness and disturbance decoupling characteristics. Aeroelastic instability may occur when an elastic structure is moving even in subcritical flow speed region. Simulation results using sliding mode observer are presented to control aeroelastic response of flapped wing system due to various external excitations as well as model uncertainty and sinusoidal disturbances in subcritical incompressible flow region.

능동 제어를 이용한 공작기계용 정압베어링의 성능 향상에 관한 연구

  • 강선호;박준호;조형석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 추계학술대회 논문집
    • /
    • pp.249-254
    • /
    • 1992
  • Hydrostatic Bearings have been applied to ultra high precision machine tools and precision instruments, because of their low friction characteristic, high load carrying capacity and high moving accuracy at all range of speed. In regard to realizing the Hydrostatic Bearing, various restrictors such as capillary, orifice, diaphram valve, spool valve, and etc can be used. However, their stiffness and flexibility are not sufficient in practical use for ultra precision machine tool elements. In this study dynamic equations were derived and the dynamic characteristics were simulated for both orifice and flow control servo valve. Simulation was carried out on the condition that static and sinusoidal dynamic loads were applied to the table of CNC jig Boring machine. The simulation results indicate the improvement of the performance of the Bearing system when flow control servo valve has been used as restrictor of Hydrostatic Bearing.

조력발전소 조위 제약사항을 고려한 발전기 효율시험에 관한 연구 (A Study of a Generator Efficient Testing Method that Incorporates Tidal Limitations)

  • 김현한;전정표;김광호
    • 산업기술연구
    • /
    • 제33권A호
    • /
    • pp.23-30
    • /
    • 2013
  • Tidal power generation is to produce electrical energy from fluctuations of the ebb and flow in a constructed embankment. More specifically, the sinusoidal variations of tidal flow, along with the periodicity and changes in the height of waves over time make the tidal power generation possible at a certain tidal level. This paper proposes a more practical efficiency test method for tidal power plant generator that utilizes the axis torque changing values rather than the retardation method which is commonly used. The proposed method was compared with the conventional method and the test result shows that proposed method provides a similar accuracy with the conventional retardation method and a better efficiency.

  • PDF

날개꼴의 형상 최적화를 위한 유동방정식 영향 연구 (Influence of Flow Solvers On Airfoil Shape Optimization)

  • 정희택;류병석
    • 한국전산유체공학회지
    • /
    • 제4권2호
    • /
    • pp.67-73
    • /
    • 1999
  • In the present paper, three types of the flow solvers were used to investigate the influence on the airfoil shape optimization. The adopted equations, i.e., Euler, thin layer Navier-Stokes and full Navier-Stokes ones. are solved using implicit LU-ADI decomposition scheme. The gradient projection method with the sinusoidal function was used as an optimization algorithm. The present numerical method was applied to the drag minimization problems under the initial shape of NACA0012 airfoils.

  • PDF

LOCALLY ENRICHED QUADTREE GRID NUMERICAL MODEL FOR NEARSHORE CIRCULATION IN THE SURF ZONE

  • Park, Koo-Yong
    • Water Engineering Research
    • /
    • 제1권3호
    • /
    • pp.187-197
    • /
    • 2000
  • This paper describes an adaptive quadtree-based 2DH wave-current interaction model which is able to predict wave breaking, shoaling, refraction, diffraction, wave-current interaction, set-up and set-down, mixing processes (turbulent diffusion), bottom frictional effects, and movement of the land-water interface at the shoreline. The wave period-and depth-averaged governing equations are discretised explictly by means of an Adams-Bashforth second-order finite difference technaique on adaptive hierarchical staggered quadtree grids. Grid adaptation is achieved through seeding points distributed according to flow criteria(e.g. local current gradients). Results are presented for nearshore circulation at a sinusoidal beach. Enrichment permits refined modelling of important localised flow features.

  • PDF

날개꼴의 형상 최적화를 위한 유동방정식 영향 연구 (Influence of Flow Solvers On Airfoil Shape Optimization)

  • 정희택;류병석
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.171-176
    • /
    • 1999
  • In the present paper, three types of the flow solvers were used to investigate the influence on the airfoil shape optimization. The adopted equations, i.e., Euler , thin layer Navier- Stokes and full Navier-Stokes ones, are solved using implicit LU-ADI decomposition scheme. The feasible direction algorithm with the sinusoidal function was used as an optimization algorithm. The present numerical method was applied to the drag minimization problems under the initial shape of NACA0012 airfoils.

  • PDF

High Temperature Deformation Behavior of SiCp/2124Al Metal Matrix Composites

  • Tian, Y.Z.;Cha, Seung I.;Hong, Soon H.
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.69-72
    • /
    • 2002
  • The high temperature deformation behavior of SiCp/2124Al composite and 2124Al alloy was investigated by hot compression test in a temperature ranged $400~475^{\circ}C$ over a strain rate ranged $10^{-3}~1s^{-1}$. The billets of 2124Al alloy and SiCp/2124Al composite were fabricated by vacuum hot pressing process. The stress-strain curve during high temperature deformation exhibited a peak stress, and then the flow stress decreased gradually into a steady state stress with increasing the strain. It was found that the flow-softening behavior was attributed to the dynamic recovery, local dynamic recrystallization and dynamic precipitation during the deformation. The precipitation phases were identified as S' and S by TEM diffraction pattern. Base on the TEM inspection, the relationship between the Z-H parameter and subgrain size was found based on the experiment data. The dependence of flow stress on temperature and strain rate could be formulated well by a hyperbolic-sinusoidal relationship using the Zener-Hollomon parameter.

  • PDF

주름진 판형 열교환기의 성능향상에 관한 연구 (A Study on the Heat Tranfer Enhancement of Heat Exchangers with Corrugated Wall)

  • 오윤영;유성연;고성호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.115-118
    • /
    • 2002
  • The present study deals with CFD analysis of a plastic heat exchanger with corrugated wall. This exchanger has sinusoidal corrugations, and the flow through the exchanger is three dimensional. In addition, CFX-5.4, a commercial code utilizing unstructured mesh, was used as a computational method for solving RANS(Reynolds-Averaged Navier-Stokes) equations, and the applied turbulence model is $k-{\varepsilon}$ model. The factors to affect the efficiency of a plastic heat exchanger are heat conductivity, flow characteristics and so on. For those two factors, heat conductivity is fixed by the wall material. Therefore, the How along the corrugation affects the efficiency more, provided the same material. In conclusion, the heat transfer enhancement of a plastic heat exchanger with corrugated wall can be recognized from the flow characteristics such as velocity streamline, local heat transfer coefficient, velocity contour, and pressure contour. To confirm the results, both of the measured and the computational data for pressure loss were compared with each other, and they were identical.

  • PDF

원관내 층류 왕복유동에 의한 열적발달영역에서의 열전달 (Heat Transfer by Liminar Oscillating Pipe Flow in Thermally Developing Region)

  • 이대영;박상진;노승탁
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.997-1008
    • /
    • 1994
  • Heat transfer by laminar oscillating flow in a circular pipe has been studied analytically. The general solution with respect to the arbitrary wall boundary condition is obtained by superposing the fluid temperatures with the sinusoidal wall temperature distributions. The fulid temperature distributions are two dimensional, but uniform flow assumption is used to simplify the velocity distribution. The heat transfer characteristics in the thermally developing regions are analyzed by applying the general solution to the two cases of thermal boundary conditions in which the wall temperature and wall heat flux distributions have a square-wave form, respectively. The results show that the length of the thermally developing region becomes larger in proportion to the oscillation frequency at slow oscillation and eventually approaches to the value comparable to the swept distance as the frequency increases. The time and cross-section averaged Nusselt number in the developing region is inversely proportional to the square root of the distance from the position where the wall boundary condition is changed suddenly. In the developed region, Nusselt number is only determined by the oscillation frequency.

Numerical study on Wells turbine with penetrating blade tip treatments for wave energy conversion

  • Cui, Ying;Hyun, Beom-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권5호
    • /
    • pp.456-465
    • /
    • 2016
  • In order to optimize the performance of a Wells turbine with fixed guide vanes, the designs of an end plate and a ring on the tip of the turbine rotor are proposed as penetrating blade tip treatments. In this study, numerical investigations are made using computational fluid dynamics (CFD)-based ANSYS Fluent software, and validated by corresponding experimental data. The flow fields are analyzed and non-dimensional coefficients $C_A$, $C_T$ and ${\eta}$ are calculated under steady-state conditions. Numerical results show that the stalling phenomenon on a ring-type Wells turbine occurs at a flow coefficient of ${\phi}=0.36$, and its peak efficiency can reach 0.54, which is 16% higher than that of an unmodified turbine and 9% higher than in the case of an endplate-type turbine. In addition, quasi-steady analysis is used to calculate the mean efficiency and output work of a wave cycle under sinusoidal flow conditions. As a result, it has been found that the ring-type turbine is superior to other types of Wells turbines.