• Title/Summary/Keyword: Sintered pure aluminum

Search Result 6, Processing Time 0.021 seconds

A Study on the Variation of Tensile Ductility in Porous Sintered Pure Aluminum (다공성 소결 순 Al에서 인장연성 변화에 관한 연구)

  • Jung, J.Y.
    • Transactions of Materials Processing
    • /
    • v.27 no.2
    • /
    • pp.93-99
    • /
    • 2018
  • An analytical solution for the tensile ductility in porous ductile materials was derived based on an Irwin's approach of the elastic-plastic deformation in fracture mechanics. This was in good agreement with the experimental results of a tensile ductility in a sintered pure Al, and could solve the discrepancies in the Brown and Embury, or the McClintock models. This model was also offered as an advanced analytical solution considering the effect of stress triaxiality of pore tip in addition to pore interactions, material properties of matrix, and local deformation effect around pore. The evaluation of an analytical solution in the sintered pure Al powder compacts showed that the tensile ductility depends not only on the volume fraction of pores, but also on the pore size and on the mechanical properties of the matrix. The tensile ductility of the sintered pure Al compacts decreased rapidly with the increasing of a pore volume fraction, despite of the excellent tensile ductility of the matrix. This significant decrease in the tensile ductility was mainly attributed to the low yield strength of the matrix and small pore size. Particularly, the effects of the large radius and high volume fraction of the pore on the tensile ductility in Al-Form, were thus reasonably predicted by this analytical equation.

Single Walled Carbon Nanotubes-Reinforced Metal Matrix Composite Materials Fabricated by Spark Plasma Sintering (방전플라즈마 소결공정으로 제조된 단일벽탄소나노튜브 강화 금속기지 복합재료)

  • Kwon, Hansang
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.94-99
    • /
    • 2017
  • Single walled carbon nanotubes were mixed with various metal powders by mechanical ball milling and sintered by spark plasma sintering processes. Two compositional (0.1 and 1 vol%) of the single walled carbon nanotubes were dispersed onto the pure aluminum, 5052 aluminum alloy, pure titanium, Ti6Al4Vanadium alloy, pure copper, and stainless steel 316L. Each composite powders were spark plasma sintered at $600^{\circ}C$ and well synthesized regardless of the matrices. Vickers hardness of the composite materials was measured and they exhibited higher values regardless of the carbon nanotubes composition than those of the pure materials. Moreover, single walled carbon nanotubes reinforced copper matrix composites showed highest enhancement between the other metal matrices system. We believe that low energy mechanical ball milling and spark plasma sintering processes are useful tool for fabricating of the carbon nanotubes-reinforced various metal matrices composite materials. The single walled carbon nanotubes-reinforced various metal matrices composite materials could be used as an engineering parts in many kind of industrial fields such as aviation, transportation and electro technologies etc. However, detail strengthening mechanism should be carefully investigated.

Mechanical Properties and Shape Memory Characteristics of NiAl Alloys by Powder Metallurgy (분말야금법으로 제작한 NiAl합금의 기계적성질 및 형상기억특성)

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.231-238
    • /
    • 2020
  • The composition of martensite transformation in NiAl alloy is determined using pure nickel and aluminum powder by vacuum hot press powder metallurgy, which is a composition of martensitic transformation, and the characteristics of martensitic transformation and microstructure of sintered NiAl alloys are investigated. The produced sintered alloys are presintered and hot pressed in vacuum; after homogenizing heat treatment at 1,273 K for 86.4 ks, they are water-cooled to produce NiAl sintered alloys having relative density of 99 % or more. As a result of observations of the microstructure of the sintered NiAl alloy specimens quenched in ice water after homogenization treatment at 1,273 K, it is found that specimens of all compositions consisted of two phases and voids. In addition, it is found that martensite transformation did not occur because surface fluctuation shapes did not appear inside the crystal grains with quenching at 1,273 K. As a result of examining the relationship between the density and composition after martensitic transformation of the sintered alloys, the density after transformation is found to have increased by about 1 % compared to before the transformation. As a result of examining the relationship between the hardness (Hv) at room temperature and the composition of the matrix phase and the martensite phase, the hardness of the martensite phase is found to be smaller than that of the matrix phase. As a result of examining the relationship between the temperature at which the shape recovery is completed by heating and the composition, the shape recovery temperature is found to decrease almost linearly as the Al concentration increases, and the gradient is about -160 K/at% Al. After quenching the sintered NiAl alloys of the 37 at%Al into martensite, specimens fractured by three-point bending at room temperature are observed by SEM and, as a result, some grain boundary fractures are observed on the fracture surface, and mainly intergranular cleavage fractures.

Preparation and Thermal Behavior of Monodispersed $Al_2O_3-TiO_2$ Powder Synthesized by Alkoxide Method

  • Song, Yong-Won;Kim, Gyun-Joong;Park, Sang-Heul
    • The Korean Journal of Ceramics
    • /
    • v.1 no.3
    • /
    • pp.137-142
    • /
    • 1995
  • Monodispersed $Al_2O_3-TiO_2$ Powder was prepared by metal-alkoxide hydrolsis. A homogeneous nucleation/growth occurred in the solutions containing ethanol, butanol and acetonitrile, and resulted in spherical, submicrometer-sized powder. The titania and the alumina crystals were formed at $800^{\circ}C$ and $1000^{\circ}C$, respectively. These crystala were subsequently reacted each other beyond $1320^{\circ}C$ and formed $Al_2TiO_5$. The relative densities of sintered bodies prepared with as-received powder were examined at the temperature range of 1300-$1500^{\circ}C$ and they were about 79% at $1300^{\circ}C$. The formation of aluminum titanata decreased the relative density at the temperature range of 1300-$1450^{\circ}C$, and at above $1450^{\circ}C$, the relative density started to increase again. It was observed that $\alpha-Al_2O_3$-doped aluminum titanate was more stable than pure aluminum titante at $1200^{\circ}C$.

  • PDF

Synthesis of Polycrystalline YAG Ceramics by Milling-precipitation (분쇄-침전을 이용한 다결정 YAG 세라믹스의 합성)

  • 홍석범;정현기;심수만
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1120-1126
    • /
    • 2003
  • Yttrium Aluminum Garnet (YAG) powders were prepared by precipitation of Y hydroxides during milling of alumina powders. The powder calcined at 1200$^{\circ}C$ for 4 h contained a small amount of Yttrium Aluminum Monoclinic (YAM) in addition to YAG. However, phase-pure YAG was obtained in the compact of the milled powder with an average particle size of 0.57 ${\mu}$m at 1300$^{\circ}C$, which is much lower than those (l500∼1600$^{\circ}C$) for a mixed oxide method. The powder was found to exhibit an excellent sinterability regardless of the addition of a sintering aid, SiO$_2$(350 ppm Si). The undoped sample were sintered to a relative density of 98% at l600$^{\circ}C$. In contrast, the addition of SiO$_2$ caused a considerable densification to occur at 1500$^{\circ}C$ and the relative density reached 97.7%. But the sintering aid had little effect on the densification at 1600$^{\circ}C$, showing a similar relative density to the undoped sample.

Microstructure and thermal conductivity of AIN ceramics with ${Y_2}{O_3}$ fabricated by pressureless sintering (상압 소결법으로 제조된 이트리아 첨가 질화 알루미늄 세라믹스의 미세 구조 및 열전도도)

  • Chae, Jae-Hong;Park, Joo-Seok;Ahn, Jong-Pil;Kim, Kyoung-Hun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.33-38
    • /
    • 2009
  • The effect of ${Y_2}{O_3}$ as a sintering additive on thermal conductivity and microstructure of pressureless sintered AIN ceramics was investigated at sintering temperature range from 1,700 to $1,900^{\circ}C$. ${Y_2}{O_3}$ added AIN specimens showed higher densification rate than pure AIN because of the formation of the yttrium aluminates secondary phase by reaction of ${Y_2}{O_3}$ and ${Al_2}{O_3}$ of AIN surface. The thermal conductivity of AIN specimens was promoted by the addition of ${Y_2}{O_3}$ in spite of the formation of secondary phase in AIN gram boundaries and grain boundary triple junction, because ${Y_2}{O_3}$ addition could reduced the oxygen contents in AIN lattice which is primary factor of thermal conductivity. The them1al conductivity of AIN specimens was promoted by increasing sintering time because the increases of average grain size and the elimination of secondary phases from the grain boundary due to the evaporation. Particularly. the thermal conductivity of AIN specimen sintered at $1,900^{\circ}C$ for 5 hours improved over 20 %. $141\;Wm^{-1}K^{-1}$, compared with the specimen sintered at $1,900^{\circ}C$ for 1 hour.