• 제목/요약/키워드: Sintered magnet

검색결과 75건 처리시간 0.028초

분말입도에 따른 Nd-Fe-B 소결자석의 미세조직 변화 및 자기적 특성 (Microstructure and Magnetic Properties of Nd-Fe-B Sintered Magnet with the Variation of Particle Size)

  • 신동원;김동환;박영철;김정곤
    • 한국분말재료학회지
    • /
    • 제23권6호
    • /
    • pp.447-452
    • /
    • 2016
  • Neodymium-iron-boron (Nd-Fe-B) sintered magnets have excellent magnetic properties such as the remanence, coercive force, and the maximum energy product compared to other hard magnetic materials. The coercive force of Nd-Fe-B sintered magnets is improved by the addition of heavy rare earth elements such as dysprosium and terbium instead of neodymium. Then, the magnetocrystalline anisotropy of Nd-Fe-B sintered magnets increases. However, additional elements have increased the production cost of Nd-Fe-B sintered magnets. Hence, a study on the control of the microstructure of Nd-Fe-B magnets is being conducted. As the coercive force of magnets improves, the grain size of the $Nd_2Fe_{14}B$ grain is close to 300 nm because they are nucleation-type magnets. In this study, fine particles of Nd-Fe-B are prepared with various grinding energies in the pulverization process used for preparing sintered magnets, and the microstructure and magnetic properties of the magnets are investigated.

Influence of Cooling Condition of Casted Strips on Magnetic Properties of Nd-Fe-B Sintered Magnets

  • Jung, Hwaebong;Kim, Sumin;Moon, Hongjae;Oh, Yoon S.;Lee, Young-Joo;Lee, Hyun-Sook;Lee, Wooyoung
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1422-1431
    • /
    • 2018
  • We investigated the additional (secondary) cooling effect of casted strips on the magnetic properties of Nd-Fe-B sintered magnets. The Nd-Fe-B sintered magnets were fabricated with the casted strips prepared without and with additional cooling. Additional cooling was achieved by blowing Ar gas at various pressures (0.1, 0.3, and 0.6 MPa) on the free-side surface of the strips during the strip-casting process. The higher magnetic properties of $H_c$, $B_r$, and $(BH)_{max}$ of the final Nd-Fe-B sintered magnets were obtained for 0.1 MPa rather than for 0.0 MPa. The best microstructure of the columnar grains in the casted strips was produced with the aid of a lower pressure of gas on the free-side surface. It was found that the microstructure of the strips affects the distribution of grains grown in the sintered magnets. This report demonstrates that the improved magnetic performance of Nd-Fe-B sintered magnets was achieved via additional gas cooling.

Manufacture of Permalloy Soft Magnets by Powder Injection Molding

  • W.Y. Jeung;Park, J.W.
    • Journal of Magnetics
    • /
    • 제6권1호
    • /
    • pp.13-18
    • /
    • 2001
  • Permalloy soft magnets have been produced by the powder injection molding process. Rheological characteristics of mixtures, debinding conditions, and the magnetic properties of permalloy after sintering have been investigated. A permalloy soft magnet with a permeability of 14200 could be obtained by preparing a mixture with a powder loading of 65.4 vol % and a PP/PEG binder systems solvent extraction, thermal debinding, and subsequent sintering at 1350$\^{C}$ in hydrogen. The permalloy soft magnet sintered in hydrogen had 95% of theoretical density and a magnetic induction of 13.2 kG in an applied magnetic field of 50 Oe.

Self-Shielding Magnetized vs. Shaped Parallel-Magnetized PM Brushless AC Motors

  • Pang Y.;Zhu Z. Q.;Howe D.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권1호
    • /
    • pp.13-19
    • /
    • 2005
  • The performance of two designs of permanent magnet brushless motor, by having self-shielding magnetized magnets or sinusoidally shaped parallel-magnetized magnets with essentially sinusoidal airgap flux distributions, are compared. It is shown that the parallel-magnetized motor with shaped sintered NdFeB magnets can result in a higher airgap flux density and torque density than that of a self-shielding magnetized motor equipped with an anisotropic injection moulded NdFeB ring magnet.

수소 재액화용 단열 탈자 냉동기의 설계 (Design of Adiabatic Demagnetization Refrigerator for Hydrogen Re-Liquefaction)

  • 박지호;김영권;정상권;김석호
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권3호
    • /
    • pp.53-59
    • /
    • 2012
  • Adiabatic demagnetization refrigerator (ADR) for hydrogen re-liquefaction operating between 24 K and 20 K has been designed. $Dy_{0.9}Gd_{0.1}Ni_2$, whose Curie temperature is 24 K, is selected as a magnetic refrigerant. The magnetic refrigerant powder is sintered with oxygen-free high purity copper (OFHC) powder to enhance its effective thermal conductivity as well as to achieve relatively high frequency. A perforated plate heat exchanger (PPHE) operated with forced convection is utilized as a heat switch. The forced convection heat switch is expected to have fast response relative to a conventional gas-gap heat switch. A conduction-cooled high Tc superconducting (HTS) magnet is employed to apply external magnetic field variation on a magnetic refrigerant. $2^{nd}$ generation GdBCO coated conductor HTS tape with Kapton$^{(R)}$ insulation (SUNAM Inc.) will be utilized for the HTS magnet. The magnetization and demagnetization processes are to be achieved by the AC operation of the HTS magnet. The designed magnetic field and target ramp rate of the HTS magnet are over 4 T with 180 A and 0.4 T/s, respectively. AC loss distribution on HTS magnet is theoretically estimated.