• 제목/요약/키워드: Sintered Preform

검색결과 26건 처리시간 0.023초

Optimizing Electrical and Mechanical Properties of Reaction-Sintered SiC by using Different-Sized SiC Particles in Preform

  • Jeon, Young-Sam;Shin, Hyun-Ho;Park, Jin-Soo;Kang, Sang-Won
    • 한국세라믹학회지
    • /
    • 제45권8호
    • /
    • pp.439-442
    • /
    • 2008
  • A series of reaction-sintered SiC was fabricated from preforms with varying volume fractions of two resin-coated SiC particles of different sizes (63 and $18{\mu}m$). The electrical resistivity and mechanical strength were eventually optimized at the small particle volume fraction of $0.3{\sim}0.4$, at which point the porosity of the preform was minimized. This study experimentally proves that additional processes after the formation of the preform, such as silicon infiltration and reaction sintering, do not apparently alter the optimum volume fraction of the preform packing, predicted by an existing analytical model based on solid packing. Thus, the volume fraction of particles of different sizes can be determined practically through the solid packing model to fabricate RSSCs with optimal properties.

회전성형법에 의한 분말성형체의 고밀도화 연구 (The Cold Rotary Repressing Process of Sintered Preform)

  • 윤덕재;임성주;최석우;나경환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.281-286
    • /
    • 1997
  • Thin study is concerned with the cold repressing of sintered preform by rotary forging process. A experiment has been carried out using the rotary powder forging press(500kN) which was designed and constructed in the authors' laboratory. The effect of process variables and aspect ratios of sintered preform was observed and measured by several mechanical test, such as working force, hardness distribution, density, and microstructures of the specimens. It is found that the highly densified P/M parts can be obtained and this process is very effective for improving quality of the powder products.

  • PDF

분말단조법에 의한 알루미늄 합금 피스톤 개발 (The Development of Aluminium Alloy Piston by Powder Forging Method)

  • 강대용;박종옥;김길준;김영호;조진래;이종헌
    • 한국정밀공학회지
    • /
    • 제17권8호
    • /
    • pp.87-93
    • /
    • 2000
  • Powder Forging technology is being developed rapidly because of its economic merits and the possibility of lightening parts by replacing steel parts with aluminum ones especially in automotive parts manufacturing. Recently Powder Forging process is widely used for manufacturing primary mechanical parts as a combined technology of P/M and precision hot forging. This paper describes the process conditions for the powder forging of Aluminium alloy piston. For example powder alloy design preform design by FEM simulation cold of compaction of specimens and preform sintering of preform powder forging process. The characteristics of sintered compaction of specimens and preform sintering of preform powder forging process. The characteristics of sintered products and final forged piston ones are investigated with tensile strength hardness ductility and so on. Eventually its results prove the improve mechanical properties of the piston produced by powder forging.

  • PDF

Processing of Porous Ceramics with a Cellular Structure Using Polymer Beads

  • Ha, Jung-Soo;Kim, Chang-Sam
    • 한국세라믹학회지
    • /
    • 제40권12호
    • /
    • pp.1159-1164
    • /
    • 2003
  • Two processing routes (i.e., the gel casting and polymer preform routes) using polymer beads were studied to fabricate porous ceramics with a cellular structure. The gel casting route, comprising the gel casting of a ceramic slurry mixed with polymer beads, was found to be inadequate to produce porous ceramic bodies with a interconnected pore structure, due to complete coating of the slurry on the polymer beads, which left just isolated pores in the final sintered bodies. The polymer preform route, involving the infiltration of a polymer beads preform with the ceramic slurry, successfully produced porous ceramics with a highly interconnected network of spherical pores. The pore size of 250-300 $\mu\textrm{m}$ was demonstrated and the porosity ranged from 82 to 86%. This process is advantageous to control the pore size because it is determined by the sizes of polymer beads used. Another feature is the avoidance of hollow skeleton, giving a high strength.

용융 Al의 치환반응에 의한 $Al_2O_3/Al$ 복합체의 제조 (Fabrication of $Al_2O_3/Al$ Composites by Replacement Reaction of Molten Metal Al)

  • 정두화;김용진;배원태
    • 한국세라믹학회지
    • /
    • 제34권6호
    • /
    • pp.591-600
    • /
    • 1997
  • Al2O3/Al composites were produced by displacement reaction method, which was carried out by immersing the sintered silica preform, which was prepared from fused silica powder, in molten aluminum. Because the molten aluminum did not penetrate into the silica preform with higher than 20% of porosity when the displacement reaction was accomplished at 100$0^{\circ}C$ for 10 hours in air atmosphere, the optimum range of sintering temperature of silica preform was from 135$0^{\circ}C$ to 140$0^{\circ}C$. The microstructure of this Al2O3/Al composites showed three-dimentionally co-continuous alumina, which provides wear resistance and high stiffness, and aluminium which acts as a toughnening phase. The grain size of the alumina in composites did not change with the particle size of the silica preform. The exact shape of the preform was retained and a net-shaped composite was produced. The representative Al2O3/Al composite prepared in this study showed 3.30mg/㎤ of bulk density, 350-430 MPa of flexural strength, 7.0 MPa.m1/2 of fracture toughness, and good machinability.

  • PDF

유한요소 해석을 통한 피스톤 분말단조 공정의 특성 분석 (Characteristic Analysis of Powder Forging Processes for Engine Pistons by Finite Element Analysis)

  • 조진래;주영신;김영호
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.2042-2049
    • /
    • 2000
  • This paper is concerned with the comparison of forging characteristics between forward and backward processes, through the three-dimensional finite element simulation, for the aluminum powder forging of engine pistons. Starting from the theoretical formulation of velocity and temperature fields in the sintered preform during the process, we examine the comparative distributions of relative density, effective stress and temperature as well as the variations of total forging load and total volume reduction. Through the comparative results, we find out that the forward method provides better forging characteristics than the backward method.

분말단조에 의한 베벨기어의 성형 기술 연구 (Development of Bevel Gear by Powder Forging Process)

  • 이정만
    • 한국분말재료학회지
    • /
    • 제4권4호
    • /
    • pp.258-267
    • /
    • 1997
  • The powder forging process is an attractive manufacturing route for bevel gears. It offers beneficial material utilization and the minimization of finishing operations over that of conventional hot forging. The paper describes the process conditions for the powder forging of bevel gear, for example, powder alloy design, preform design, deformation of sintered preform, forging processes. The characteristics of prototype gear are investigated with microstructure, the density distribution, surface roughness of tooth, bending strength test of tooth, etc. The results of the bending strength test may prove the mechanical properties of powder forged gear.

  • PDF

반응 금속 침투법에 의한 $Al/Al_2O_3$복합체의 제조 및 기계적 특성 (Fabrication and mechanical properties of $Al/Al_2O_3$ composites by reactive metal penetration method)

  • 윤영훈;홍상우;최성철
    • 한국결정성장학회지
    • /
    • 제11권6호
    • /
    • pp.239-245
    • /
    • 2001
  • 뮬라이트 preform과 비정질 실리카를 알루미늄 용융체에서 $1100^{\circ}C$, 5시간 동안 반응시켜 $Al/Al_2O_3$복합체가 제조되었다. 뮬라이트 preform과 알루미늄 용융체 간의 화학적 반응은 상호 연결된 미세구조를 형성하였다. $Al/Al_2O_3$복합체의 금속의 양은 뮬라이트 preform의 소결 온도($1600^{\circ}C$, $1625^{\circ}C$, $1650^{\circ}C$, $1700^{\circ}C$)에 따른 겉보기 기공율의 변수로서 조절되었으며, 복합체의 기계적 특성들은 알루미늄 양에 따라 조사되었다. $1600^{\circ}C$ 이상의 온도에서 소결된 뮬라이트 preform은 침투된 알루미늄 용융체와 화학반응을 이루었으나, $1600^{\circ}C$에서 소결된 뮬라이트 소결체는 알루미늄 용융체에 대해 젖음이 이루어지지 않아 화학반응이 진행되지 않았다. 알루미늄 용융체의 침투 방향에 따른 복합체의 기계적 특성에 대한 영향은 알루미늄 용융체의 수직, 평행한 침투 방향 패턴의 두 가지 다른 모델들에 의해 고려되었다. $Al/Al_2O_3$복합체에서 알루미늄의 양의 증가에 따라 파괴강도는 감소하였으며, 파괴인성은 증가하는 경향을 나타냈다.$ Al/Al_2O_3$복합체의 미세구조는 금속의 침투 방향에 의해 결정되었지만, 복합체의 파괴강도와 파괴인성은 금속 침투 방향에 대한 의존성은 나타내지 않았다.

  • PDF

반응소결법으로 제조한 Al기 복합재용 Fe-Al합금 예비성형체의 특성평가 (Characteristic Evaluation of the Fe-Al Alloy Preform Fabrication by Reactive Sintering Process for the Al Matrix Composites.)

  • 최답천;박성혁;주형곤
    • 한국주조공학회지
    • /
    • 제19권6호
    • /
    • pp.493-500
    • /
    • 1999
  • Squeeze casting was used for fabricating a light metal base composite having high strength and wearresistance. Reactive sintering was used to prepare the preform of Squeeze casting. To utilize Fe-Al intermetallic compounds and SiC particle as a reinforcement, there needs to prepare Fe-Al mixed powder at 50, 60, 70at.%Al, and add SiC powder to the above mixture at 4, 7, 16, 24wt.%. The prepared mixture with SiC was reactive sintered in a tube furnace at $660^{\circ}C$ to get a porous hybrid preform of intermetallic compound and SiC. The preform prepared above was placed in a metal mold, preheated at $660^{\circ}C$ AC4C matrix was injected into the mold with the temperature of the melt at $610^{\circ}C$ After these processes, 66MPa was applied to the mold for 5 minute to finish the whole procedure. The maximum reaction temperature was increased with the increased Al amount, but decreased with the increased SiC amount. The density of the preform was decreased with SiC amount increase in the compacts due to swelling of the preform. An optical microscope was applied to observe the micro structure and the dispersion of the reinforcements. To analyze phases, We utilized XRD, EDS. Hardness test were chosen to get the information of mechanical properties. There were no significant changes in micro structure between the composite and preform. However, it was shown that uniform dispersion of the reinforcers and complete infiltration of the melt into the preform were achieved through the procedure of the squeeze casting. It was observed that the hardness of the composite is decreased with increased SiC amount, resulting from the volumetric expansion of the preform.

  • PDF

분말컨넥팅로드 단조의 유한 요소 해석 (Finite Element Analysis of P/M Connecting Rod Forging)

  • 박종진
    • 소성∙가공
    • /
    • 제1권1호
    • /
    • pp.33-41
    • /
    • 1992
  • Sintered P/M connecting rod is forged to increase density and to satisfy dimensional specifications. Flow of the materials is different form that of wrought materials due to pores in the preform. The Mises yield function was modified to. include the first invariant of stress tensor, and the associated flow rule was derived by applying the normality rule to the yield function. Axisymmetric and plane-strain finite element analyes were carried out for the ring and beam portions of the connecting rod, respectively. The flow of the preform and density change of the analysis are presented in this paper. A load-stroke curve was also presented by superimposing analysis results for the ring and beam portions.

  • PDF