• Title/Summary/Keyword: Sink Unit

Search Result 60, Processing Time 0.023 seconds

Thermal Optimization of a Straight Fin Heat Sink with Bypass Flow (바이패스가 있는 히트 싱크의 열성능 최적화)

  • Kim, Jin-Wook;Kim, Sang-Hoon;Kim, Joong-Nyon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.179-184
    • /
    • 2010
  • This experimental study investigated the effect of tip clearance and bypass flow on the cooling performance of a straight fin heat sink. Both the horizontal and vertical directions of the bypass flow were studied by using a mass flow controller and test sections. The thermal resistance of a heat sink was obtained to elucidate the response of the cooling performance to tip clearance and bypass flow. The thermal resistance of a straight fin heat sink gradually increases with increasing tip clearance. A flow guide unit was employed to reduce the bypass flow. An optimal distance from the leading edge of the heat sink to the flow guide unit was found for the fixed volume flow rate. The contribution of the flow guide unit to the thermal performance of a heat sink increases with increasing volume flow rate.

Study on the Elongation of Crown Root in Rice Plant (Oryza sativa L.) (수도관근의 신장에 관한 연구)

  • 정원일
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.3
    • /
    • pp.193-197
    • /
    • 1982
  • 1t is well known that the stem is filed with shoot units in the rice plant and each internode bears several crown roots. But it has not yet been ascertained that what controls the differential elongation of the crown roots in the same internode. Thereupon, author had been carried out this experiment to ascertain what controls the elongation of the crown roots in the same internode, especially on the conception of sink-source by leaf-cutting method. Generally, one shoot unit has two important sinks: one axillary bud (tiller) and several crown roots. When we removed the axillary bud, namely shoot unit has one sink: several crown roots, the crown roots formed near the midvein (source) were longer than the crown roots born near the axillary bud. And when the shoot unit has two sinks: one axillary bud and several crown roots, the other way, the crown roots formed at the prophyll unit of the tiller were longest, and the crown roots formed near the midvein were shortest and the crown roots born the near the tiller showed interim length. Juding from the present results, we can suppose that, when shoot unit has two sinks, axillary bud is superior sink than the crown roots. So that axillary bud grows faster than crown roots and tiller becomes a new source. Therefore the crown roots which formed at the new source and the crown roots born the near the new source are longer than others.

  • PDF

Performance Analysis of Heat Pump System with Air Source Evaporator and Single Unit Dual Sink Condenser (공기열원 2중히트싱크 열펌프의 성능해석)

  • Woo, J.S.;Lee, S.K.;Lee, J.H.;Park, H.S.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.11-22
    • /
    • 1998
  • Floor panel heating system using hot water is the primary heating system of domestic residential building. This paper presents the results of performance analysis of the heat pump system with air source evaporator and single unit dual sink(SUDSk) condenser. The heat exchanger combines two separated condensers into a single condenser and the object of the SUDSk condenser is to release energy to dual sinks, i.e. air for air heating system and water for panel heating system in one single unit. Simulation program is developed for single unit dual source(SUDS) SUDSk heat pump system and some experimental data are obtained and compared with simulation results. Differences of heating capacity and COP in dual source operating mode are 7% and 8% respectively. Simulation results are in good agreement with test results. Therefore, developed program is effectively used for design and performance prediction of dual source dual sink heat pump system with SUDS evaporator and SUDSk condenser.

  • PDF

A Study on Heat Transfer Performances of a Heat Pipe Heat Sink for Power Control Semiconductors (전력제어 반도체용 히트파이프 냉각기의 열전달 성능 연구)

  • 강환국;김재진;김철주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.701-709
    • /
    • 2001
  • In this days, heat pipe heat sink has been widely applied to power controllers for railway substations to remove heat from power semiconductors(diodes or thyristors). The heat pipe heat sink consists of a aluminum heating block for mounting the thyristor, 2~3 heat pipes and large number of aluminum fins. The present study was to get fundamental informations of the structure, design parameters and heat transfer performances of heat pipe heat sink. Series of operational test for a unit with 3 heat pipes were performed and its heat flow circuit was analysed from the experimentally obtained data on wall temperature distribution. Total resistance was ranged 0.02~$0.03^{\circ}C$/W for a power range from 40W to400W. The time to get the steady state was approximately longer than 20 minutes, and overshooting was not occurred during start up operation.

  • PDF

An Efficient Architecture on a Sink-node for an Intelligence Robot in USN Environment (USN 환경에서 동작하는 지능형 로봇을 위한 효율적 싱크노드 아키텍처 구현)

  • Choi, Byoung-Wook;Shin, Dong-Gwan;Yi, Soo-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.160-162
    • /
    • 2007
  • The systems for assisted living and convenience of user real-time requirement in data communication among devices. therefore, it system was requirement to implementation of the hardware which guarantees the real-time to load the high-performance processor with suitable Operation System. This paper apply to operated intelligence robot in USN(Ubiquitous Sensor Network) environment, particularly, it is architecture research for guarantees the real-time of a sink-node that collect various sensor information from sensors and sending to main control unit.

  • PDF

Cross Layer Optimal Design with Guaranteed Reliability under Rayleigh block fading channels

  • Chen, Xue;Hu, Yanling;Liu, Anfeng;Chen, Zhigang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3071-3095
    • /
    • 2013
  • Configuring optimization of wireless sensor networks, which can improve the network performance such as utilization efficiency and network lifetime with minimal energy, has received considerable attention in recent years. In this paper, a cross layer optimal approach is proposed for multi-source linear network and grid network under Rayleigh block-fading channels, which not only achieves an optimal utility but also guarantees the end-to-end reliability. Specifically, in this paper, we first strictly present the optimization method for optimal nodal number $N^*$, nodal placement $d^*$ and nodal transmission structure $p^*$ under constraints of minimum total energy consumption and minimum unit data transmitting energy consumption. Then, based on the facts that nodal energy consumption is higher for those nodes near the sink and those nodes far from the sink may have remaining energy, a cross layer optimal design is proposed to achieve balanced network energy consumption. The design adopts lower reliability requirement and shorter transmission distance for nodes near the sink, and adopts higher reliability requirement and farther transmission distance for nodes far from the sink, the solvability conditions is given as well. In the end, both the theoretical analysis and experimental results for performance evaluation show that the optimal design indeed can improve the network lifetime by 20-50%, network utility by 20% and guarantee desire level of reliability.

A study on the design and cooling of the heat sink with hybrid structure of conductive polymer composite and metal (열전도성 고분자 복합소재/금속 소재 하이브리드 구조의 방열기구 설계 및 방열특성에 관한 연구)

  • Yoo, Yeong-Eun;Kim, Duck Jong;Yoon, Jae Sung;Park, Si-Hwan
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.14-19
    • /
    • 2016
  • Thermally or electrically conductive filler reinforced polymer composites are extensively being developed as the demand for light weight material increases rapidly in industiral applications need good conductivity such as heat sink of the electronics or light. Carbon or ceramic materials like graphite, carbon nanotube or boron nitride are typical conductive fillers with good thermal or electical conductivity. Using these conductive fillers, the polymer composites in the market show wide range of thermal conductivity from approximately 1 W/mK to 20 W/mK, which is quite enhanced considering the thermal conductivity lower than 0.5 W/mK for most polymeric materials. The practical use of these composites, however, is yet limited to specific applications because most composites are still not conductive enough or too difficult to process, too brittle, too expensive for higher conductivity. For practical use of conductive composite, the thermal conductivity required depending on the heat releasing mode are studied first for simplified unit cooling geometry to propose thermal conductivities of the composites for reasonable cooling performance comparing with the metal heat sink as a reference. Also, as a practical design for heat sink based on polymer composite, composite and metal sheet hybrid structures are investigated for LED lamp heat sink and audio amplication module housing to find that this hybrid structure can be a good solution considering all of the cooling performance, manufacturing, mechanical performance, cost and weight.

Multi-unit Level 2 probabilistic safety assessment: Approaches and their application to a six-unit nuclear power plant site

  • Cho, Jaehyun;Han, Sang Hoon;Kim, Dong-San;Lim, Ho-Gon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1234-1245
    • /
    • 2018
  • The risk of multi-unit nuclear power plants (NPPs) at a site has received considerable critical attention recently. However, current probabilistic safety assessment (PSA) procedures and computer code do not support multi-unit PSA because the traditional PSA structure is mostly used for the quantification of single-unit NPP risk. In this study, the main purpose is to develop a multi-unit Level 2 PSA method and apply it to full-power operating six-unit OPR1000. Multi-unit Level 2 PSA method consists of three steps: (1) development of single-unit Level 2 PSA; (2) extracting the mapping data from plant damage state to source term category; and (3) combining multi-unit Level 1 PSA results and mapping fractions. By applying developed multi-unit Level 2 PSA method into six-unit OPR1000, site containment failure probabilities in case of loss of ultimate heat sink, loss of off-site power, tsunami, and seismic event were quantified.

Relationship of Spikelet Number with Nitrogen Content, Biomass, and Nonstructural Carbohydrate Accumulation During Reproductive Stage of Rice (벼의 영화수와 생식 생장기 경엽중, 질소함량 및 비구조 탄수화물함량과의 관계)

  • 이변우;박동하;최일선
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.6
    • /
    • pp.486-491
    • /
    • 2002
  • Spikelet number and its components of rice plant are closely associated with nitrogen accumulation and biomass production during panicle formation stage. To elucidate this relationship and also compare the differences of the sink formation efficiency among cultivars, spikelet number, its components, nitrogen content, nonstructural carbohydrate content, and plant dry matter were investigated under 5 nitrogen levels with two split application methods and shading treatments by using three rice varieties. The nitrogen amount in shoot at panicle initiation stage and at 15 days after panicle initiation showed significant positive correlation with primary rachis branches per square meter, and that at 15 days after panicle initiation and at heading stage with secondary rachis branches per square meter, Primary and secondary rachis branches per square meter showed positive significant correlation with the shoot dry weight at panicle initiation stage and at 15 days after panicle initiation stage, respectively, The amount of degenerated secondary rachis branches and spikelets per square meter showed significant negative correlation with the dry weight and nonstructural carbohydrate increase of stem during 15days after panicle initiation, and the contents of nonstructural carbohydrate at 15 days after panicle initiation. Spikelets per unit area showed significant positive correlation with nitrogen amount in shoot and shoot dry weight at heading stage. The sink formation efficiency expressed as the spikelet number produced by the unit amount of nitrogen in shoot at heading stage was higher in Nampoongbyeo than Choocheongbyeo and Hwaseongbyeo. Sink formation efficiency was negatively correlated with the dry weight increase of shoot and stem during reproductive stage. but not significantly with that of leaf in all varieties. Sink formation efficiency was not significantly correlated with nonstructural carbohydrate, but was significantly negatively correlated with structural carbohydrate increase during reproductive stage.

Numerical analysis of heat dissipation performance of heat sink for IGBT module depending on serpentine channel shape (수치 해석을 통한 절연 게이트 양극성 트랜지스터 모듈의 히트 싱크 유로 형상에 따른 방열 성능 분석)

  • Son, Jonghyun;Park, Sungkeun;Kim, Young-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.415-421
    • /
    • 2021
  • This study analyzed the effect on the cooling performance of the channel shape of a heat sink for an insulated gate bipolar transistor (IGBT). A serpentine channel was used for this analysis, and the parameter for the analysis was the number of curves. The analysis was conducted using computational fluid dynamics with the commercial software ANSYS fluent. One curve in the channel improved the heat dissipation performance of the heat sink by up to 8% compared to a straight-channel heat sink. However, two curves in the channel could not improve the heat discharge performance further. Instead, the two curves caused a higher pressure drop, which induces parasitic loss for the pumping of coolant. The pressure drop of the two-curve channel case was 2.48-2.55 times larger than that of a one-curve channel. This higher pressure drop decreased the heat discharge efficiency of the heat sink with two curves. The discharge heat per unit pressure drop was calculated, and the result of the straight heat sink was highest among the analyzed cases. This means that the heat discharge efficiency of the straight heat sink is the highest.