• Title/Summary/Keyword: Single-stage AC-DC converter

Search Result 119, Processing Time 0.02 seconds

Three Level Single-Phase Single Stage AC/DC Resonant Converter With A Wide Output Operating Voltage Range (넓은 출력 전압제어범위를 갖는 3레벨 단상 단일전력단 AC/DC 컨버터)

  • Marius, Takongmo;Kim, Min-Ji;Oh, Jae-Sung;Lee, Gang-Woo;Kim, Eun-Soo;Hwang, In-Gab
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.424-432
    • /
    • 2018
  • This study presents a single-phase single-stage three-level AC/DC converter with a wide controllable output voltage. The proposed AC/DC converter is designed to extend the application of e-mobility, such as electric vehicles. The single-stage converter integrates a PFC converter and a three-level DC/DC converter, operates at a fixed frequency, and provides a wide controllable output voltage (approximately 200-430Vdc) with high efficiencies over a wide load range. In addition, the input boost inductors operate in a discontinuous mode to improve the input power factor. The switching devices operate with ZVS, and the converter's THD is small, especially at full load. The feasibility of the proposed converter is verified by the experimental results of a 1.5 kW prototype.

Modeling and Control of a Two-Stage DC-DC-AC Converter for Battery Energy Storage System (배터리 에너지 저장 장치를 위한 2단 DC-DC-AC 컨버터의 모델링 방법)

  • Hyun, Dong-Yub;Jung, Seok-Eon;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.422-430
    • /
    • 2014
  • This study proposes a small-signal model and control design for a two-stage DC-DC-AC converter to investigate its dynamic characteristics in relation to battery energy storage system. When the circuit analysis of the two-stage DC-DC-AC converter is attempted simultaneously, the mathematical procedure of deriving the dynamic equation is complex and difficult. The main idea of modeling the two-stage DC-DC-AC converter states that this topology is separated into a bidirectional DC-DC converter and a single-phase inverter with an equivalent current source corresponding to that of the inverter or converter. The dynamic equations for the separated converter and inverter are then derived using the state-space averaging technique. The procedures of building the small-signal model of the two-stage DC-DC-AC converter are described in detail. Based on the derived small-signal model, the individual controllers are designed through a frequency-domain analysis. The simulation and experimental results verify the validity of the proposed modeling approach and controller design.

Single Phase Single-Stage AC/DC Forword PFC Converter with PFC (단상 역율개선형 Single-stage AC/DC Forward Converter)

  • 김은수
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.396-399
    • /
    • 2000
  • 기존이 역률보상회로가 별도의 전력변화단을 가지고 있어 소자수가 많아지고 복잡한 하드웨어 구성을 가지고 있는 단점이 있다 본 논문에서는 별 도의 전력변환단을 가지지않고 PFC기능을 가지는 단일 전력단(Single-Stage) 단상 AC/DC Forward Converter에 대하여 실험하여 검증하였다

  • PDF

A Study on Soft Switching of Single-Stage PFC AC/DC Full Bridge Converter (Single-Stage PFC AC/DC Full Bridge Converter의 소프트 스위칭에 관한 연구)

  • 임경내;성병기;계문호;권순재;김철우
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.401-404
    • /
    • 1998
  • This paper proposes a new soft switching single stage AC/DC full bridge converter with unit power factor and isolated output. This circuit shows that it is possible to combine the boost converter which is for PFC(Power Factor Correction) and full bridge converter which is for DC/DC converter. A simple auxiliary circuit which includes neither lossy components nor active switches eliminates ringing of secondary side of the transformer. The characteristics of the proposed circuit are investigated and the validity is verified by the simulation results.

  • PDF

Power Factor with Single Power Stage AC/DC Converter Operated in Active-Clamp Mode (능동 클램프 모드로 동작하는 단일 전력 AC/DC 컨버터에 의한 역률개선)

  • Yoon, Shin-Yong;Baek, Hyun-Soo;Kim, Yong;Kim, Cherl-Jin;Eo, Chang-Jin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.8
    • /
    • pp.392-401
    • /
    • 2001
  • This paper presents the single-stage high power factor AC to DC converter operated in active-clamp mode. The proposed converter is added active-clamping circuit to boost-flyback single-stage power factor corrected power supply. The active-clamping circuit limits voltage spikes, recycles the energy trapped in the leakage inductance, and provides a mechanism for achieving soft switching of the electronic switches to reduce the switching loss. The auxiliary switch of active-clamping circuit uses the same control and driver circuit as the main switch to reduce the additional cost and size. To verify the performance of the proposed converter, a 100W converter has been designed. The proposed converter gives good power factor correction, low line current harmonic distortions, and tight output voltage regulation, as used unity power factor.

  • PDF

Analysis and Implementation of Single-Stage AC/DC Converter with Magnetic Energy Feedback Technique for Power Factor Correction (역률개선을 위한 자기에너지 궤환기법의 단일전력단 AC/DC 컨버터의 해석 및 구현)

  • 문건우;오관일;전영수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.148-155
    • /
    • 1998
  • A novel single-switch, single-stage, AC/DC forward converter with transformer magnetic energy feedback technique for power factor correction is proposed. The operational principle and analysis of the proposed converter is presented. The proposed converter gives the good power factor correction, low line current harmonic distortions, and tight output voltage regulation. The prototype shows the IEC 555-2 requirements are met satisfactorily with nearly unity power factor.

A Characteristic Analysis of Single-Power-Stage High Frequency Resonant AC-DC Converter with High Power Factor (고역률 단일 전력단 고주파 공진 AC-DC 컨버터의 특성해석)

  • 남승식;원재선;황계호;오경섭;박재욱;김동희;오승훈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.372-380
    • /
    • 2004
  • This paper proposes a single-power-stage high frequency resonant AC-DC converter with high power factor using ZVS(Zero Voltage Switching), and integrates a conventional converter with two stage into single stage converter. Input power factor is possible to be improved as a high power factor because inductor for power factor correction(PFC) is connected in input and converter is operated in discontinued current mode(DCM) with constant duty cycle and variable switching frequency. The conventional converter with two stage need to add a switch in order to control a power factor, but single stage converter have a advantage that system is simple and cost is down, confidence is improved, etc. This paper described a operation principle and characteristic analysis for single stage AC-DC converter with high power factor and have evaluated characteristic values by using normalized parameter. We make a experimental equipment using MOSFET as a switching device on the basis of characteristic values obtained from characteristic evaluations and we conform a rightfulness of theoretical analysis by comparing theoretical waveforms and experimental waveforms.

3-Phase Single Stage AC-DC Converter for Small Wind Turbine System (소형풍력발전을 위한 3상 단일전력단 교류-직류 컨버터)

  • Yu-Jin Moon;Beom-Su Park;Sang-Kyu Kim;Eun-Soo Kim;Deok-Jin Lim
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.68-75
    • /
    • 2023
  • This paper proposes a three-phase single-stage AC-DC converter for the small wind generation system. Input power factor improvement and insulated output can be implemented with the proposed three-phase single-stage AC-DC converter under the wide power generation voltage (80-260 Vac) and frequency (10-42 Hz) in a small wind power generation (WPG) system. The proposed converter is also capable of zero-voltage switching in the primary-side switches and zero-current switching in the secondary-side diodes by phase-shift control at a fixed switching frequency. In addition, it is possible to control a wide output voltage (Vo: 39 VDC-60 VDC) by varying the link voltage and improving the input power factor (PF) and the total harmonic distortion factor (THDi). Simulation and experimental results verified the validity of the proposed converter.

Single Input Multi Output DC/DC Converter: An Approach to Voltage Balancing in Multilevel Inverter

  • Banaei, M.R.;Nayeri, B.;Salary, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1537-1543
    • /
    • 2014
  • This paper presents a new DC/AC multilevel converter. This configuration uses single DC sources. The proposed converter has two stages. The first stage is a DC/DC converter that can produce several DC-links in the output. The DC/DC converter is one type of boost converter and uses single inductor. The second stage is a multilevel inverter with several capacitor links. In this paper, one single input multi output DC-DC converter is used in order to voltage balancing on multilevel converter. In addition, as compare to traditional multilevel inverter, presented DC/AC multilevel converter has less on-state voltage drop and conduction losses. Finally, in order to verify the theoretical issues, simulation and experimental results are presented.

Modified Ac-Dc Single-Stage Converters

  • Moschopoulos, Gerry;Liu, Yan;Bassan, Sondeep
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.44-54
    • /
    • 2007
  • Ac-dc power conversion can either be done with two separate converter stages or with a single converter stage. Two-stage ac-dc converters, however, can be costly and complex, while the performance of single-stage converters is compromised due to a reduced number of components. Several researchers have therefore proposed adding some sort of auxiliary circuit consisting of a second switch and some passive elements to single-stage converters to improve their performance. Although these modified single-stage converters may have two converters, they are not two-stage converters as they do not have two separate and independently controlled converters that are always operating to convert power from one form to another. In this paper, the operation of ac-dc single-stage converters is first reviewed and their strengths and weaknesses are noted. The operation of several modified single-stage converters, including one proposed by the authors, is then discussed, and the paper concludes by presenting experimental results that confirm the feasibility of the proposed converter.