• Title/Summary/Keyword: Single-phase PWM rectifier

Search Result 61, Processing Time 0.022 seconds

A PWM Method for Single-Phase 3-Level High Power Rectifiers (단상 3레벨 대용량 정류기의 PWM방법)

  • Cho, S.J.;Song, J.H.;Kim, Y.D.;Choy, I;Yoo, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1937-1939
    • /
    • 1998
  • This paper presents a simple switching method to generate a PWM pattern mostly relevant to signle-phase three-level PWM rectifier. The adopted PWM switching pattern is performed in a manner similar to the space vector PWM method, which is popularly used in the three-phase rectifier and inverter. A set of possible voltages has been selected so that an equation with a time integral considered within a sampling period should be satisfied every sampling time. The simulation result shows that the proposed control scheme is good in some performance criteria such as unity power factor, low harmonic distortion of input current, dynamic response and voltage balancing of two series-connected DC capacitors.

  • PDF

Design and Making of PWM Control-based AC-DC Converter with Full-Bridge Rectifier (전파 정류기를 가지는 PWM 제어 기반의 AC-DC 컨버터 설계 및 제작)

  • Bum-Soo Choi;Sang-Hyeon Kim;Dong-Ki Woo;Min-Ho Lee;Yun-Seok Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.617-624
    • /
    • 2023
  • Recently, miniaturization and low power consumption of electronic products and improved efficiency and power factor improvement have become a matter of great interest. In this paper, an AC-DC converter based on PWM control was designed and made. The AC-DC converter is designed with a structure in which one rectifier circuit and one output voltage control circuit are connected in series. The rectifier circuit is a diode-based single phase full-wave current circuit and the output voltage control circuit is a DC-DC conversion circuit based on PWM control. Arduino was used as the main control device for PWM control, and LCD was configured at the output stage so that the control result could be checked. The error between the output voltage displayed on the oscilloscope and LCD and the target output voltage was confirmed through repeated experiments with the test circuit, and the validity of the proposed design methodology was confirmed by showing an error rate of about 5% based on the oscilloscope measurement value.

Three-Phase Z-Source PWM Rectifier Based on the DC Voltage Fuzzy Control (직류전압 퍼지 제어 기반의 3상 Z-소스 PWM 정류기)

  • Qiu, Xiao-Dong;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.466-476
    • /
    • 2013
  • This paper describes a fuzzy control method to control the output voltage of the three-phase Z-source PWM rectifier. A fuzzy control system is a control system based on fuzzy logic, and the fuzzy controller uses a single input fuzzy theory with its fuzzification. Analytical structure of the simplest fuzzy controller is derived through the triangular membership functions with its fuzzification. By setting the membership functions of the fuzzy rules, fuzzy control is achieved. The PI portion of the output DC voltage controller is controlled by fuzzy method. To confirm the validity of the proposed method, the simulation and experiment were performed, The simulation is performed with PSIM and MATLAB/SIMULINK. For the experiment, we used a DSP(TMS320F28335) controller to compute the reference value and generate the PWM pulses. For the transient state performance of the output DC voltage control of Z-source PWM rectifier, the PI controller and fuzzy controller were compared, also the conventional PWM rectifier and Z-source PWM rectifier were compared. From the results, the Z-source rectifier could allow to buck or boost of the output DC voltage. Through the analysis of the transient state, we could observe that the fuzzy controller has better performance than the conventional PI controller.

Design Method for the LCL Filters of Three-phase Voltage Source PWM Rectifiers

  • Guo, Xizheng;You, Xiaojie;Li, Xinran;Hao, Ruixiang;Wang, Dewei
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.559-566
    • /
    • 2012
  • A new design method for the LCL filters of three-phase voltage source PWM rectifiers is presented in this paper. Based on the single-phase harmonic equivalent model, the harmonic voltage of the rectifier side is calculated to design the LCL filter parameters by an iterative algorithm, in which the resonance frequency $f_{res}$ and the ratio r between the grid-side inductance and the rectifier-side inductance are selected as known constants. The design criteria and process are introduced and the influence on the design result by the value of the resonance frequency $f_{res}$, ratio r is analyzed. Finally an example (600V, 500kW) is tested by simulation and experiment to verify the validity of the new design method.

A study of Single-phase Voltage Source PWM Converter for High Power Factor (고역률 제어를 위한 단산 전압원 PWM 컨버터에 관한 연구)

  • 류성식;손진근;정을기;김형원;전희종
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.362-365
    • /
    • 1999
  • In this paper, the method of reducing harmonics and correcting of power factor in single PWM converter associated with diode rectifier and boos converter is studied. The ac-dc converter in which the harmonic distortion in the input current is reduced using a third harmonic injected PWM is proposed. A lower switching power loss and easy configuration o control circuit are obtained by adopting discontinuous current mode. Simulation and experimental results of ac-dc converter with 5[KHz] switching frequency are presented and correction of power factor and reduction of total harmonic distortion was established.

  • PDF

Simulation of three Phase PWM Boost converter (단상제어형 3상 PWM 승압용 컨버터의 시뮬레이션)

  • Kang, W.J.;Kim, S.D.;Chun, J.H.;Lee, K.S.;Suh, K.Y.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2668-2670
    • /
    • 1999
  • In the past, the PWM converter had a large switching loss by hard switching and difficult to high frequency operation. The resonance converter to decrease the switching loss and EMI is required the frequency control and needed to reduce the voltage or current stress at each parts. So, this paper propose the 3-phase boost converter and the method to compensated input power factor by control the amplitude - an instantaneous value of the DC inductor current -and control the switching frequency that a modulation error by the ripple of the DC inductor current. The proposed 3-phase PWM boost converter of single phase control type can takes higher capacity and compensate the power factor by using Feed back controller at each phase for the existing 3-phase bridge rectifier type. Moreover the 3-phase full bridge type using the rectifier at each 3-phase circuit will be small size reactor and compensate input power factor by minimize harmonic components of each phase.

  • PDF

Synchronization loop by vector product in single-phase system (단상시스템에서 벡터적(vector product)에 의한 동기 루프)

  • 배기훈;기상우;조국춘;최종묵
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.219-225
    • /
    • 1998
  • A Diode bridge rectifier and a phase-controlled thyristor bridge rectifier generate harmonics in power system. Nowadays, power factor and harmonics are important performance in electrical equipment for railway vehicle. Many researchers have been trying to improve the power factor and ac-side harmonics. Therefore the PWM converter has been used to operate at unity power factor and to reduce ac-side current harmonics. This paper proposes the synchronization loop by vector product in single-phase PWM converter. The proposed control method can realize the sinusolidal input current waveform and the effective unity power factor. The validity of the proposed control method is verified through the experimental result.

  • PDF

Characteristics analysis of single-phase high power factor PWM boost rectifier (단상 고역률 PWM 승압형 정류기의 특성해석)

  • Kim, J.Y.;Mun, S.P.;Suh, K.Y.;Kim, Y.M.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1209-1210
    • /
    • 2006
  • This paper presents a single phase high power factor PWM boost rectifier featuring soft commutat -ion of the active switches at zero current. It incorporates the most desirable properties of conventional PWM and soft switching resonant techniques. The input current shaping is achieved with average current mode control and continuous inductor current mode. This new PWM converter provides zero current turn on and turn off of the active switches, and it is suitable for high power applications employing IGBT's. The principle of operation, the theoretical analysis, a design example, and experi -mental results from a laboratory prototype rated at 1.6[kW] with 400[Vdc] output voltage are presented. The measured efficiency and the power factor were 96.2[%] and 0.99[%], respectively, with an input current THD equal to 3.94[%], for an input voltage with THD equal to 3.8[%], at rated load.

  • PDF

The 1.6[kW] Class Single Phase ZCS-PWM High Power Factor Boost Rectifier (1.6[kW]급 단상 ZCS-PWM HPF 승압형 정류기)

  • Mun, S.P.;Kim, S.I.;Yun, Y.T.;Kim, Y.M.;Lee, H.W.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1169-1171
    • /
    • 2003
  • This paper presents a 1.6[kW]class single phase high power factor(HPF) pulse width modulation(PWM) boost rectifier featuring soft commutation of the active switches at zero current. It incorporates the most desirable properties of conventional PWM and soft switching resonant techniques. The input current shaping is achieved with average current mode control and continuous inductor current mode. This new PWM converter provides zero current turn on and turn off of the active switches, and it is suitable for high power applications employing insulated gate bipolar transistors(IGBT'S). The principle of operation, the theoretical analysis, a design example, and experimental results from laboratory prototype rated at 1.6[kW] with 400[Vdc] output voltage are presented. The measured efficiency and the power factor were 96.2[%] and 0.99[%], respectively, with an input current Total Harmonic Distortion(THD) equal to 3.94[%], for an input voltage with THD equal to 3.8[%], at rated load.

  • PDF

The Parallel Operation of Single Phase PWM Rectifier using IGCT (IGCT를 이용한 단상 PWM정류기 병렬운전)

  • 이현원;장성영;김연준;이광주
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 2000
  • 대용량 반도체 소자인 IGCT를 사용하여 철도차량용 AC-to-DC 단상 PWM 컨버터를 제작 실험하였다. 컨버터의 용량을 향상시키기 위해 2대의 PWM 컨버터를 병렬 운전하였으며 병렬운전시 각각의 컨버터 스위칭각을 다르게 제어하여 각 컨버터의 전류 리플을 상쇄시켜 전원의 고조파 함유를 줄였다. 출력전압제어는 입력전류의 측정 없이 내부 계산에 의해 수행하였으며 단위역률을 제어하기 위해 소프트웨어적으로 간단히 PLL을 수행하였다.