• 제목/요약/키워드: Single-leg landing

검색결과 23건 처리시간 0.021초

Bilateral Differences of Knee Kinematics and Kinetics in Anterior Cruciate Ligament Reconstructed Females during Landing and Cutting

  • Chang, Eun Wook
    • 한국운동역학회지
    • /
    • 제28권3호
    • /
    • pp.175-180
    • /
    • 2018
  • Objective: Anterior cruciate ligament reconstruction (ACLR) has been considered the primary treatment for anterior cruciate ligament (ACL) injured patient. However, there is little biomechanical evidence regarding bilateral knee joint biomechanics during landing and cutting task after ACLR. Method: Eighteen females with ACLR participated in this investigation. Double leg jump landing (DLJL) and single leg jump cut (SLJC) biomechanics were assessed. Results: During DLJL, the healthy knee showed greater knee valgus angle at initial contact ($^{\circ}$) compared to the injured knee (Injured: $2.93{\pm}2.59$, Healthy: $4.20{\pm}2.46$, t=2.957, p=0.009). There was a significant difference in anterior tibial shear force ($N{\times}N^{-1}$) with greater in the injured knee (Injured: $1.41{\pm}0.39$, Healthy: $1.30{\pm}0.35$, t=2.201, p=0.042). During SLJC, injured knee showed greater knee extension moment ($N^*m{\times}[N^*m]^{-1}$) compared to healthy knee (Injured: $0.51{\pm}0.19$, Healthy: $0.47{\pm}0.17$, t=2.761, p=0.013). However, there was no significant differences between the knees in the other variables. Conclusion: ACLRfemales exhibited a greater knee valgus angle at initial contact and lesser anterior tibial shear force on the healthy knee during double leg jump landing. In addition, ACLR females showed a greater knee extension moment on the injured knee during single leg jump cut.

드롭랜딩 시 높이 변화에 따른 인체 분절의 충격흡수 전략에 관한 연구 (The Study of Strategy for Energy Dissipation During Drop Landing from Different Heights)

  • 조준행;고영철;이대연;김경훈
    • 한국운동역학회지
    • /
    • 제22권3호
    • /
    • pp.315-324
    • /
    • 2012
  • The purpose of current study was to investigate the effects of the heights on the lower extremities, torso and neck segments for energy dissipation during single-leg drop landing from different heights. Twenty eight young healthy male subjects(age: $23.21{\pm}1.66yr$, height: $176.03{\pm}4.22cm$, weight: $68.93{\pm}5.36kg$) were participated in this study. The subjects performed the single-leg drop landing from the various height(30, 45 & 60 cm). Force plates and motion-capture system were used to capture ground reaction force and kinematics data, respectively. The results were as follows. First, the ROM at the ankle, knee, hip and trunk was increased with the increased heights but the ROM at the neck was increased in the 60cm. Second, the angular velocity, moment and eccentric work at the ankle, knee, hip, trunk, and neck was increased with the increased heights. Third, the contribution to total work at the knee joint was not significantly different, while the ankle joint rate was decreased and hip and neck rate was increased in the 60cm, and trunk rate was increased with the increased heights. Lastly, the increase in landing height was able to augment the level of energy dissipation not only at the lower extremities but also at the trunk and neck. The findings showed that drop landing affect trunk and neck with lower extremity joints. Therefore, we need to consider that trunk and neck strengthening including stability should be added to reduce sports injury during prevention training.

Comparison of difference in muscle activity ratio, ground reaction force and knee valgus angle during single leg squat and landing according to dynamic taping

  • Ha, Tae-Won;Park, Sam-Ho;Lee, Myung-Mo
    • Physical Therapy Rehabilitation Science
    • /
    • 제9권4호
    • /
    • pp.281-286
    • /
    • 2020
  • Objective: This study examined the effects of dynamic tape applied to the patellofemoral joint on the knee valgus angle, muscle activity, and ground reaction force during a single leg squat (SLS) and single leg landing (SLL). Design: Cross-sectional study. Methods: Twenty-four subjects (11 male, 13 female) who met the inclusion criteria were screened by the knee palpation and patella compression tests. First, the knee valgus angle and muscle activity during SLS were measured. Second, the knee valgus angle and ground reaction force during SLL were measured. For the intervention, a patella joint loop using dynamic tape was used. The knee valgus angle, muscle activities in SLS and SLL after the intervention, and the ground reaction force were measured in the same way. A paired t-test was used to examine the difference between before and after the intervention. Results: The knee valgus angle showed a statistically significant improvement after dynamic taping application in SLS and SLL (p<0.05). The differences in muscle activity of the VL/VMO and ground reaction forces were not statistically significant after dynamic taping application in SLS and SLL. Conclusions: This study showed that dynamic taping applied around the patellofemoral joint was effective in improving the knee valgus angle in SLS and SLL and had a reduced risk of secondary injury during sports activity.

Effect of Ankle Taping Type and Jump Height on Balance during Jump Landing in Chronic Ankle Instability

  • Kim, Mikyoung;Kong, Byungsun;Yoo, Kyungtae
    • 국제물리치료학회지
    • /
    • 제11권2호
    • /
    • pp.2077-2089
    • /
    • 2020
  • Background: Chronic ankle instability is a common injury that decreases balance and negatively affects functional movements, such as jumping and landing. Objectives: To analyze the effect of taping types and jump heights on balance with eyes open and closed during jump landings in chronic ankle instability. Design: Within-subject design. Methods: The study involved 22 patients with chronic ankle instability. They performed both double-leg and single-leg drop jump landings using three conditions (elastic taping, non-elastic taping, and barefoot) on three different jump platforms (30, 38, and 46 cm). Balance was measured using the Romberg's test with eyes open and closed. Results: Interaction effect was not statistically significant. Balance with eyes open and closed was significantly improved in both the elastic taping and non-elastic taping conditions compared to the barefoot condition. There was no significant difference according to the jump height. Conclusion: Individuals with chronic ankle instability demonstrated increased balance ability with eyes open and closed when jump landing. Elastic taping and non-elastic taping on the ankle joint can positively affect balance during landing in individuals with chronic ankle instability.

거골하 관절 현수 테이핑의 생체 역학적 효과 분석 (Analysis of Biomechanical Effect of the Subtalar Sling Ankle Taping)

  • 최문석;전혜선;김영호
    • 한국운동역학회지
    • /
    • 제17권1호
    • /
    • pp.135-144
    • /
    • 2007
  • The purpose of this study was to identify the effect of the subtalar sling ankle taping, by measuring changes in peak plantar pressure and subtalar angle during jump landing and walking in healthy subjects with subtalar sling ankle taping applied of the ankle joint. Fifty healthy subjects(8 males and 7 female, aged 22 to 25) were randomly divided into a participated in this study. They were free of musculoskeletal injury and neurologic deficit in lower extremity. The subjects were asked to perform 5M walking and single leg jump landing by under the guidance of physical therapists. Subtalar motions were typically measured as the angle made between the posterior aspect of the calcaneous and the posterior aspect of the lower leg during walking with taping or not. This measurement were made using a video system (30Hz sampling rate, rectified 60 Hz sampling rate). At the same time, peak lateral and vertical pressure were investigated using pressure distribution platforms(MatScan system) under foot during walking and single leg jump landing with taping or not. Statistical analysis was done by paired t-test and intraclass correlation coefficient [ICC(3.1)], using software SPSS. We have recently demonstrated significantly altered patterns of subtalr joint and peak plantar pressure when applied subtalar sling ankle taping(p<.05). Inversion angle of subtalar joint significantly decreased with taping(p<.05). The result suggest that pressure patterns observed in subjects are likely to result due to significant decrease in stress on ankle joint structures during jump landing and walking. Also, the result that the subtalar sling ankle taping procedure provides greater restiction of motion associated with ankle inversion. However, this study involved asymptomatic subjects without history of ankle inversion injury, further research is needed to assess the motion restraining effect of the subtalar sling ankle taping in subjects with lateral ankle instability.

착지 후 점프 시 높이가 하지 관절의 변화와 부상기전에 미치는 영향 (The Effects of Landing Height on the Lower Extremity Injury Mechanism during a Counter Movement Jump)

  • 조준행
    • 한국운동역학회지
    • /
    • 제22권1호
    • /
    • pp.25-34
    • /
    • 2012
  • The purpose of this study was to determine the effects of landing height on the lower extremity during a counter movement jump. Fourteen healthy male subjects (age: $27.00{\pm}2.94$ yr, height: $179.07{\pm}5.03$ cm, weight: $78.79{\pm}6.70$ kg) participated in this study. Each subject randomly performed three single-leg jumps after s single-leg drop landing (counter movement jump) on a force platform from a 20 cm and 30 cm platform. Paired t-test (SPSS 18.0; SPSS Inc., Chicago, IL) was performed to determine the difference in kinematics and kinetics according to the height. All significance levels were set at p<.05. The results were as follows. First, ankle and knee joint angles in the sagittal plane increased in response to increasing landing height. Second, ankle and knee joint angles in the frontal plane increased in response to increasing landing height. Third, there were no significant differences in the moment of each segment in the sagittal plane for the jumping height increment. Fourth, ankle eversion moment and knee valgus moment decreased but hip abduction moment increased for the jumping height increment. Fifth, Ankle and knee joint powers increased. In percentage contribution, the ankle joint increased but the knee and hip joints decreased at a greater height. Lastly, as jumping height increased, the power generation at the ankle joint increased. Our findings indicate that the height increment affect on the landing mechanism the might augment loads at the ankle and knee joints.

농구동호인의 만성발목관절불안정성에 따른 한발착지패턴과 근활성도에 관한 연구 (A Study on the One-leg Drop landing Pattern and Muscular Activity depending on Chronic Ankle instability among Basketball Club members)

  • 정경열;김태규
    • 디지털융복합연구
    • /
    • 제19권2호
    • /
    • pp.481-488
    • /
    • 2021
  • 본 연구의 목적은 농구동호인의 만성발목관절불안정성(CAI)에 따른 한발착지패턴의 변화를 확인하고 비교분석하고자 하였다. 현재 부산광역시에서 레크레이션 농구경기에 참여하고 있는 농구동호인 30명을 대상으로 국제발목협회에서 제공하는 CAI 표준 선정기준에따라 CAI집단 21명과 CON집단 9명으로 분류하였다. 한발착지패턴을 측정하기 위해 초기접촉 시점 및 무릎관절 최대 굽힘 시점에서 하지정렬과 관절 움직임을 측정하고 초기접촉 시점, 발꿈치접촉 시점 및 무릎관절 최대 굽힘 시점에서 앞정강근, 긴종아리근, 안쪽장딴지근 및 중간볼기근의 활성도를 측정하였다. 그 결과, 집단 간 단일 다리 드롭랜딩 시 하지정렬과 하지 근활성도는 유의한 차이를 보이지 않았다. 이런 결과는, CAI에 따라 한발착지패턴과 근활성도에 유의한 차이가 없다는 것을 보여주었다. 추후 연구에서는 CAI를 세부적으로 구분하고 경기포지션을 고려하여 움직임의 특성 및 기능적 요구의 차이를 반영해야 할 것으로 생각된다.

Effects of Landing Foot Orientations on Biomechanics of Knee Joint in Single-legged Landing

  • Joo, Ji-Yong;Kim, Young-Kwan
    • 한국운동역학회지
    • /
    • 제28권2호
    • /
    • pp.143-149
    • /
    • 2018
  • Objective: This study aimed to investigate the influence of landing foot orientations on biomechanics of knee joint in order to identify vulnerable positions to non-contact knee injuries during single-legged landing. Method: Seventeen men (age: $20.5{\pm}1.1 years$, height: $175.2{\pm}6.4cm$, weight: $68.8{\pm}5.8kg$) performed single-leg drop landings repeatedly with three different landing foot orientations. They were defined as toe-in (TI) $30^{\circ}$ adduction, neutral (N, neutral), and toe-out (TO) $30^{\circ}$ abduction positions. Results: The downward phase time of TI was significantly shorter than those of N and TO. The flexion and valgus angle of N was greater than those of TI and TO at the moment of foot contact. At the instance of maximum knee flexion, N showed the largest flexion angle, and TO position had the largest varus and external rotation angles. Regarding ground reaction force (GRF) at the moment of foot contact, TO showed the forward GRF, while others showed the backward GRF. TI indicated significantly larger mediolateral GRF than others. As for the maximum knee joint force and joint moment, the main effect of different foot positions was not significant. Conclusion: TI and TO might be vulnerable positions to knee injuries because both conditions might induce combined loadings to knee joint. TI had the highest mediolateral GRF with a shortest foot contact time, and TO had induced a large external rotation angle during downward phase and the peak forward GRF at the moment of foot contact. Conclusively, N is the preferred landing foot orientation to prevent non-contact knee injuries.

전방 점프 착지 시 만성 발목 불안정성이 자세 조절에 미치는 영향 (The Effects of Chronic Ankle Instability on Postural Control during Forward Jump Landing)

  • Kim, Kew-wan;Jeon, Kyoungkyu;Park, Seokwoo;Ahn, Seji
    • 한국운동역학회지
    • /
    • 제32권1호
    • /
    • pp.9-16
    • /
    • 2022
  • Objective: The purpose of this study was to investigate how the chronic ankle instability affects postural control during forward jump landing. Method: 20 women with chronic ankle instability (age: 21.7 ± 1.6 yrs, height: 162.1 ± 3.7 cm, weight: 52.2 ± 5.8 kg) and 20 healthy adult women (age: 21.8 ± 1.6 yrs, height: 161.9 ± 4.4 cm, weight: 52.9 ± 7.2 kg) participated in this study. For the forward jump participants were instructed to stand on two legs at a distance of 40% of their body height from the center of force plate. Participants were jump forward over a 15 cm hurdle to the force plate and land on their non-dominant or affected leg. Kinetic and kinematic data were obtained using 8 motion capture cameras and 1 force plates and joint angle, vertical ground reaction force and center of pressure. All statistical analyses were using SPSS 25.0 program. The differences in variables between the two groups were compared through an independent sample t-test, and the significance level was to p < .05. Results: In the hip and knee joint angle, the CAI group showed a smaller flexion angle than the control group, and the knee joint valgus angle was significantly larger. In the case of ankle joint, the CAI group showed a large inversion angle at all events. In the kinetic variables, the vGRF was significantly greater in the CAI group than control group at IC and mGRF. In COP Y, the CAI group showed a lateral shifted center of pressure. Conclusion: Our results indicated that chronic ankle instability decreases the flexion angle of the hip and knee joint, increases the valgus angle of the knee joint, and increases the inversion angle of the ankle joint during landing. In addition, an increase in the maximum vertical ground reaction force and a lateral shifted center of pressure were observed. This suggests that chronic ankle instability increases the risk of non-contact knee injury as well as the risk of lateral ankle sprain during forward jump landing.