• Title/Summary/Keyword: Single-hole injector

Search Result 26, Processing Time 0.03 seconds

Study on Spray Characteristics of Single-Hole GDI Injector according to Nozzle Hole Diameter - (2) Comparison of Spray Uniformity and Atomization Characteristics (노즐 홀 직경에 따른 단공 GDI 인젝터의 분무 특성 연구 - (2) 분무 균일도 및 미립화 특성 비교)

  • Park, Jeonghyun;Ro, Seungcheon;Chang, Mengzhao;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.154-161
    • /
    • 2020
  • A single spray plume is the basic unit of the entire spray plume and is an important factor in understanding the spray characteristics. However, since the multi-hole GDI injector has a narrow spray angle, the superposition of the spray plumes occurs severely. Therefore, the spray uniformity and the spray atomization characteristics of a single spray plume were analyzed in this study using a single-hole GDI injector. Five single-hole GDI injectors with different nozzle hole diameters were used in the experiment. The uniformity of the spray was evaluated through the analysis of the spray pattern images. In addition, the atomization characteristics were compared using the diameter distribution of the spray droplets obtained using PDPA. As a result, the larger diameter of the nozzle hole, the less uniformity of the spray, and the injection pressure did not have a significant effect on the spray uniformity. It is judged that the surface roughness of the injector has a greater effect on spray uniformity than the diameter of the nozzle hole. Also, the size of the spray droplets increased sharply when the diameter of the nozzle hole was 230 ㎛.

Experimental Study on Spray Characteristics of Piezo Injector Group-hole Nozzle for Common Rail Diesel Engine (커먼레일 디젤기관용 피에조 인젝터 그룹홀 노즐의 분무 특성에 관한 실험적 연구)

  • Sung, K.A.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.14-19
    • /
    • 2008
  • In order to meet stringent future emission regulations, especially to reduce Particulate Matter (PM) and NOX, stoichiometric diesel combustion technology with a piezo group-hole nozzle injector is being researched for reduction harmful emissions. A new nozzle layout, namely a group-hole nozzle, which has one group of small orifices with a wide spray included angle was investigated to improve the efficiency of stoichiometric diesel combustion. From this point of view, the group-hole nozzle suggested by Dense Co. is an attractive candidate method applicable to stoichiometric diesel combustion. The group-hole nozzle concept is to reduce the injector nozzle hole diameters without sacrificing spray penetration by closely locating two holes. Experimental studies have proven that the spray from group-hole nozzles have similar spray penetration to that of a single hole with equivalent overall nozzle hole area, but the spray drop sizes (SMD) are reduced, aiding vaporization and mixing.

  • PDF

Effect of Nozzle Hole Number on Fuel Spray and Emission Characteristics of High Pressure Diesel Injector (고압 디젤 인젝터 노즐 홀 수가 연료 분무 및 배기 특성에 미치는 영향)

  • Chon, Mun Soo
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.210-215
    • /
    • 2012
  • This paper This paper presents effect of nozzle hole number on spray characteristics and engine performance. Experiments were conducted to measure spray penetration and SMD distributions using a spray visualization system and PDPA (phase Doppler particle analyzer) system. In addition, engine performance and emission characteristics were measured using a single cylinder engine and emssion measurement systems. Results showed that 8-hole-injector exhibits improved spray performances. Furthermore, soot emission was decreased with 8-hole-injector, compared to that of 6-hole-injector.

Study on Spray Characteristics of Single-Hole GDI Injector according to Nozzle Hole Diameter - (1) Comparison of Injection and Macroscopic Spray Characteristics (노즐 홀 직경에 따른 단공 GDI 인젝터의 분무 특성 연구 - (1) 분사 및 거시적 분무특성 비교)

  • Park, Jeonghyun;Ro, Seungcheon;Chang, Mengzhao;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.145-153
    • /
    • 2020
  • The purpose of this study is to compare the injection and spray characteristics of single-hole GDI injectors using injection rate and mie-scattering spray images. Five types of single-hole injectors with different nozzle hole diameters were used, and the spray rate, spray tip penetration, spray area, and spray width were analyzed. As a result, the diameter of the nozzle hole had a direct effect on the injection and spray characteristics. It was confirmed that the larger the diameter of the nozzle hole, the higher the injection quantity, the spray tip penetration, the spray area, and the spray width. In addition, it was confirmed that the near-field spray, which has little influence of ambient air, has a great correlation with the injection rate.

The Effect of Injection Angle and Nozzle Diameter on HCCI Combustion (분사각 및 분공 직경이 예혼합 압축착화 엔진 연소에 미치는 영향)

  • Kook, Sang-Hoon;Kong, Jang-Sik;Park, Se-Ik;Bae, Choong-Sik;Kim, Jang-Heon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • The effect of injector geometries including the injection angle and number of nozzle holes on homogeneous charge compression ignition (HCCI) engine combustion has been investigated in an automotive-size single-cylinder diesel engine. The HCCI engine has advantages of simultaneous reduction of PM and NOx emissions by achieving the spatially homogenous distribution of diesel fuel and air mixture, which results in no fuel-rich zones and low combustion temperature. To make homogeneous mixture in a direct-injection diesel engine, the fuel is injected at early timing. The early injection guarantees long ignition delay period resulting in long mixing period to form a homogeneous mixture. The wall-impingement of the diesel spray is a serious problem in this type of application. The impingement occurs due to the low in-cylinder density and temperature as the spray penetrates too deep into the combustion chamber. A hole-type injector (5 holes) with smaller angle ($100^{\circ}$) than the conventional one ($150^{\circ}$) was applied to resolve this problem. The multi-hole injector (14 holes) was also tested to maximize the atomization of diesel fuel. The macroscopic spray structure was visualized in a spray chamber, and the spray penetration was analyzed. Moreover, the effect of injector geometries on the power output and exhaust gases was tested in a single-cylinder diesel engine. Results showed that the small injection angle minimizes the wall-impingement of diesel fuel that results in high power output and low PM emission. The multi-hole injector could not decrease the spray penetration at low in-cylinder pressure and temperature, but still showed the advantages in atomization and premixing.

The high altitude test method of Scramjet engine combustor model (스크램제트 연소기 모델의 고공시험 연구)

  • Woo Kwan Je;Kim Young Soo;Skivin V. A
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.271-274
    • /
    • 2002
  • This paper is investigated construction of the Scramjet test facility and test method of Scramjet engine combustor model. Scramiet engine combustor model test was performed at Lab C-16BK CIAM (Central Institute of Aviation Motors) at Tyraevo in Moscow. The velocity of flow in the combustion chamber equal to Mach number 2.49 with single hole fuel spray nozzle injector and test duration equal to 7 seconds. Therefore In this paper is showed high altitude test method of Scramjet combustor model and the proper structure of combustor with single hole fuel spray nozzle.

  • PDF

The Effect of the Intake Flow on the Spray Structure of a High Pressure 11-Hole Fuel Injector in a DISI Engine (직접분사식 가솔린 기관에서 흡입유동이 고압 11공 연료분사기의 분무형상에 미치는 영향)

  • Kim, Seong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.722-727
    • /
    • 2009
  • The effect of the intake flow on the spray structure of a high pressure 11-hole fuel injector were examined in a single cylinder optical direct injection spark ignition (DISI) engine. The effects of injection timing and in-cylinder charge motion were investigated using the 2-dimensional Mie scattering technique. It was confirmed that in the homogeneous charge mode, the in-cylinder swirl charge motion played a major role in the fuel spray distribution during the induction stroke rather than the tumble flow. But, in the stratified charge mode, the effect of the in-cylinder charge was not so large that the injected spray pattern was nearly maintained and the increase of in-cylinder pressure by the upward moving piston reduced the fuel spray penetration.

Experimental Study on Spray Structure of a High Pressure 6-Hole Injector by Mie Scattering Technique (미산란 기법에 의한 고압 6공 연료분사기의 분무형상에 대한 실험적 연구)

  • Kim, Seong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.878-883
    • /
    • 2008
  • The spray characteristics of a high pressure 6-hole injector were examined in a single cylinder optical direct injection spark ignition (DISI) engine. The effects of injection timing, in-cylinder charge motion, fuel injection pressure and coolant temperature were investigated using the 2-dimensional Mie scattering technique. It was confirmed that the in-cylinder charge motion played a major role in the fuel spray distribution during the induction stroke while the propagation of fuel spray was restrained during the compression stroke by the increasing pressure and the upward moving piston. In additions, it was confirmed that the liquid fuel droplets existing at the sprays edges were vaporized by the increase of the coolant temperature.

A Study on Nozzle Flow and Spray Characteristics of Piezo Injector for Next Generation High Response Injection (차세대 고응답 분사용 피에조 인젝터의 노즐유동 및 분무특성에 관한 연구)

  • Lee Jin-Wook;Min Kyoung-Doug
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.553-559
    • /
    • 2006
  • Most diesel injector, which is currently used in high-pressure common rail fuel injection system of diesel engine, is driven by the solenoid coil energy for its needle movement. The main disadvantage of this solenoid-driven injector is a high power consumption, high power loss through solenoid coil and relatively fixed needle response's problem. In this study, a prototype piezo-driven injector, as a new injector mechanism driven by piezoelectric energy based on the concept of inverse piezo-electric effect, has been designed and fabricated to know the effect of piezo-driven injection processes on the diesel spray structure and internal nozzle flow. Firstly we investigated the spray characteristics in a constant volume chamber pressurized by nitrogen gas using the back diffusion light illumination method for high-speed temporal photography and also analyzed the inside nozzle flow by a fully transient simulation with cavitation model using VOF(volume of fraction) method. The numerical calculation has been performed to simulate the cavitating flow of 3-dimensional real size single hole nozzle along the injection duration. Results were compared between a conventional solenoid-driven injector and piezo-driven injector, both equipped with the same micro-sac multi-hole injection nozzle. The experimental results show that the piezo-driven injector has short injection delay and a faster spray development and produces higher injection velocity than the solenoid-driven injector. And the predicted simulation results with the degree of cavitation's generation inside nozzle for faster needle response In a piezo-driven injector were reflected to spray development in agreement with the experimental spray images.

Effects of Port Fuel Injection Characteristics upon HC Emission in SI Engines (연료 분사 특성이 가솔린 엔진 HC 배출에 미치는 영향)

  • 우영민;배충식;이동원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.8-15
    • /
    • 2003
  • During cold operation, fuel injection in the intake port directly contributes to the unburned hydrocarbon formation in spark ignition engines. The relationship between injection parameters and HC emission behavior was investigated through a series of experiments. Spray behavior of port fuel injectors was characterized through a quantitative evaluation of mass concentration of liquid fuel by a patternator and PDA(Phase-Doppler. Anemometer). A 6-hole injector was found to produce finer spray than single hole injector. Using a purpose-built wall, the wetted fuel was measured, which was mostly affected by wall temperature. HC emissions were measured in a production engine varying coolant temperature$(20~80^{\circ}C)$, also with respect to the different types of injectors. In the 6-hole injector application, the engine produced less HC emission in low coolant temperature region. Though it produces much more amount of wetting fuel, it has the advantages of finer atomization quality. In high coolant temperature region, there was little effect by different types of injectors. The control schemes to reduce HC emissions during cold start could be suggested from the findings that the amount of fuel supply and HC emission could be reduced by utilizing fine spray and high intake wall temperature.