• Title/Summary/Keyword: Single-frequency Relative Positioning

Search Result 16, Processing Time 0.019 seconds

Generation of Grid Maps of GPS Signal Delays in the Troposphere and Analysis of Relative Point Positioning Accuracy Enhancement (GPS 신호의 대류권 지연정보 격자지도 생성과 상대측위 정확도 향상 평가)

  • Kim, Dusik;Won, Jihye;Son, Eun-Seong;Park, Kwan-Dong
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.825-832
    • /
    • 2012
  • GPS signal delay that caused by dry gases and water vapor in troposphere is a main error source of GPS point positioning and it must be eliminated for precise point positioning. In this paper, we implemented to generate tropospheric delay grid map over the Korean Peninsula based on post-processing method by using the GPS permanent station network in order to determine the availability of tropospheric delay generation algorithm. GIPSY 5.0 was used for GPS data process and nationwide AWS observation network was used to calculate the amount of dry delay and wet delay separately. As the result of grid map's accuracy analysis, the RMSE between grid map data and GPS site data was 0.7mm in ZHD, 7.6mm in ZWD and 8.5mm in ZTD. After grid map accuracy analysis, we applied the calculated tropospheric delay grid map to single frequency relative positioning algorithm and analyzed the positioning accuracy enhancement. As the result, positioning accuracy was improved up to 36% in case of relative positioning of Suwon(SUWN) and Mokpo(MKPO), that the baseline distance is about 297km.

Error Assessment of Attitude Determination Using Wireless Internet-Based DGPS (무선인터넷기반의 DGPS를 이용한 동체의 자세결정 성능평가)

  • Lee Hong Shik;Lim Sam Sung;Park Jun Ku
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.101-108
    • /
    • 2005
  • Inertial Navigation System has been used extensively to determine the position, velocity and attitude of the body. An INS is very expensive, however, heavy, power intensive, requires long setting times and the accuracy of the system is degraded as time passed due to the accumulated error. Global Positioning System(GPS) receivers can compensate for the Inertial Navigation System with the ability to provide both absolute position and attitude. This study describes a method to improve both the accuracy of a body positioning and the precision of an attitude determination using GPS antenna array. Existing attitude determination methods using low-cost GPS receivers focused on the relative vectors between the master and the slave antennas. Then the positioning of the master antenna is determined in meter-level because the single point positioning with pseudorange measurements is used. To obtain a better positioning accuracy of the body in this research, a wireless internet is used as an alternative data link for the real-time differential corrections and dual-frequency GPS receivers which is expected to be inexpensive was used. The numerical results show that this system has the centimeter level accuracy in positioning and the degree level accuracy in attitude.

Precise attitude determination using GPS carrier phase measurements (GPS 반송파 위상을 이용한 정밀 자세 측정)

  • Park, Chan-Sik;Lee, Jang-Gyu;Jee, Gyu-In;Lee, Young-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.602-612
    • /
    • 1997
  • With GPS carrier phase measurements from more than two antenna which attached to the vehicle, precise attitude can be easily obtained if the integer ambiguity included in carrier phase measurement is resolved. Recently some special products which use dual frequencies or has one receiver engine with multiple antenna are announced. But there are still strong requirements for the conventional single frequency off-the-shelf receiver. To meet these requirements, an efficient integer ambiguity resolution technique is indispensable. In this paper, a new technique to resolve integer imbiguity with single frequency receivers is proposed. The proposed method utilize the known baseline length as a constraint of independent elements of integer ambiguities. With this constraints, the size of search volume can be greatly reduced. Thus the true integer ambiguity can be easily determined with less computational burden and number of measurements. The proposed method is applied to real data to show its effectiveness.

  • PDF

THE IMPROVEMENT OF THE RELATIVE POSITIONING PRECISION FOR GPS L1 SINGLE FREQUENCY RECEIVER USING THE WEIGHTED SMOOTHING TECHNIQUES (가중 평활화 기법을 이용한 GPS L1 단일 주파수 수신기의 상대 측위 정밀도 향상)

  • Choi, Byung-Kyu;Park, Jong-Uk;Joh, Jeong-Ho;Lim, Hyung-Chul;Park, Phi-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.371-382
    • /
    • 2004
  • To improve the precision of relative positioning for GPS single frequency(L1) receiver, we accomplished the GPS data processing using the weighted smoothing techniques. The weighted phase smoothing technique is used to minimize the measurement error of pseudorange and position domain smoothing technique is adopted to make the complement of cycle-slip affection. we also considered some component errors like as ionospheric error, which are related with baseline length, and processed for several baselines (5, 10, 30, 40, and 150 km) to check the coverage area of this algorithm. This paper shows that weighted phase smoothing technique give more stable results after using this technique and the position domain smoothing technique can reduce the errors which are sensitive to the observational environment. Based on the results, we could find out that this algorithm is available for post-time and real-time applications and these techniques can be substitution methods which is able to get the high accuracy and precision without resolving the Integer ambiguity.

A study on improving LSAST ambiguity resolution for CDGPS (CDGPS를 위한 LSAST 미지정수 추정기법 개선에 관한 연구)

  • Lee, Gi-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.74-80
    • /
    • 2006
  • GPS, which has been opened to the public since the 1980's, uses the C/A code time of arrival to estimate the position, and measures the carrier doppler frequency to estimate the velocity. In development from the 1990's, DGPS has improved position accuracy by eliminating common errors and CDGPS has achieved cm-level position accuracy using carrier phase. In this paper, a modified LSAST ambiguity resolution method for CDGPS is proposed to improve reliability and computational efficiency. Also the test results of cm level relative positioning of a moving vehicle using single frequency GPS receivers are compared to INS position. This research result can be widely used for the development of high precision INS, unmanned autonomous driving, survey and mapping, etc.

GPS-based monitoring and modeling of the ionosphere and its applications for high accuracy correction in China

  • Yunbin, Yuan;Jikun, Ou;Xingliang, Huo;Debao, Wen;Genyou, Liu;Yanji, Chai;Renggui, Yang;Xiaowen, Luo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.203-208
    • /
    • 2006
  • The main research conducted previously on GPS ionosphere in China is first introduced. Besides, the current investigations include as follows: (1) GPS-based spatial environmental, especially the ionosphere, monitoring, modeling and analysis, including ground/space-based GPS ionosphere electron density (IED) through occultation/tomography technologies with GPS data from global/regional network, development of a GNSS-based platform for imaging ionosphere and atmosphere (GPFIIA), and preliminary test results through performing the first 3D imaging for the IED over China, (2) The atmospheric and ionospheric modeling for GPS-based surveying, navigation and orbit determination, involving high precisely ionospheric TEC modeling for phase-based long/median range network RTK system for achieving CM-level real time positioning, next generation GNSS broadcast ionospheric time-delay algorithm required for higher correction accuracy, and orbit determination for Low-Earth-orbiter satellites using single frequency GPS receivers, and (3) Research products in applications for national significant projects: GPS-based ionospheric effects modeling for precise positioning and orbit determination applied to China's manned space-engineering, including spatial robot navigation and control and international space station intersection and docking required for related national significant projects.

  • PDF