• Title/Summary/Keyword: Single-channel time-frequency overlapped signal

Search Result 2, Processing Time 0.021 seconds

Effective Separation Method for Single-Channel Time-Frequency Overlapped Signals Based on Improved Empirical Wavelet Transform

  • Liu, Zhipeng;Li, Lichun;Li, Huiqi;Liu, Chang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2434-2453
    • /
    • 2019
  • To improve the separation performance of time-frequency overlapped radar and communication signals from a single channel, this paper proposes an effective separation method based on an improved empirical wavelet transform (EWT) that introduces a fast boundary detection mechanism. The fast boundary detection mechanism can be regarded as a process of searching, difference optimization, and continuity detection of the important local minima in the Fourier spectrum that enables determination of the sub-band boundary and thus allows multiple signal components to be distinguished. An orthogonal empirical wavelet filter bank that was designed for signal adaptive reconstruction is then used to separate the input time-frequency overlapped signals. The experimental results show that if two source components are completely overlapped within the time domain and the spectrum overlap ratio is less than 60%, the average separation performance is improved by approximately 32.3% when compared with the classic EWT; the proposed method also improves the suitability for multiple frequency shift keying (MFSK) and reduces the algorithm complexity.

Mixing matrix estimation method for dual-channel time-frequency overlapped signals based on interval probability

  • Liu, Zhipeng;Li, Lichun;Zheng, Ziru
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.658-669
    • /
    • 2019
  • For dual-channel time-frequency (TF) overlapped signals with low sparsity in underdetermined blind source separation (UBSS), this paper proposes an effective method based on interval probability to estimate and expand the types of mixing matrices. First, the detection of TF single-source points (TF-SSP) is used to improve the TF sparsity of each source. For more distinguishability, as the ratios of the coefficients from different columns of the mixing matrix are close, a local peak-detection mechanism based on interval probability (LPIP) is proposed. LPIP utilizes uniform subintervals to optimize and classify the TF coefficient ratios of the detected TF-SSP effectively in the case of a high level of TF overlap among sources and reduces the TF interference points and redundant signal features greatly to enhance the estimation accuracy. The simulation results show that under both noiseless and noisy cases, the proposed method performs better than the selected mainstream traditional methods, has good robustness, and has low algorithm complexity.