• 제목/요약/키워드: Single-chamber solid oxide fuel cell

검색결과 6건 처리시간 0.022초

지르코니아 전해질을 이용한 단실형 고체산화물 연료전지의 전기화학 특성 (The Electrochemical Property of the Single-Chamber Solid Oxide Fuel Cell Based on a Zirconia Electrolyte)

  • 박희정;주종훈;양재교;진연호;이규형
    • 한국전기전자재료학회논문지
    • /
    • 제29권8호
    • /
    • pp.510-515
    • /
    • 2016
  • Single-chamber solid oxide fuel cells (SC-SOFCs) consist of only one gas chamber, in which both the anode and the cathode are exposed to the same fuel-oxidant mixture. Thus, this configuration shows good thermal and mechanical resistance and allows rapid start-up and -down. In this study, the unit cell consisting of $La_{0.8}Sr_{0.2}MnO_3$ (cathode) / $Zr_{0.84}Y_{0.16}O_{2-x}$ (electrolyte) / $Ni-Zr_{0.84}Y_{0.16}O_{2-x}$ (anode) was fabricated and its electrochemical property was investigated as a function of temperature and the volume ratio of fuel and oxidant for SC-SOFCs. Impedance spectra were also investigated in order to figure out the electrical characteristics of the cell. As a result, the cell performance was governed by the polarization resistances of the electrodes. The cell exhibited an acceptable cell-performance of $86mW/cm^2$ at $800^{\circ}C$ and stable performance for 3 hs under 0.7 V.

Effects of Ru Co-Sputtering on the Properties of Porous Ni Thin Films

  • Kim, Woo-Sik;Choi, Sun-Hee;Lee, Hae-Weon;Kim, Joo-Sun
    • 한국세라믹학회지
    • /
    • 제43권11호
    • /
    • pp.746-750
    • /
    • 2006
  • NiO films and Ru co-sputtered NiO films were deposited by reactive magnetron sputtering for micro-solid oxide fuel cell anode applications. The deposited films were reduced to form porous films. The reduction kinetics of the Ru doped NiO film was more sluggish than that of the NiO film, and the resulting microstructure of the former exhibited finer pore networks. The possibility of using the films for the anodes of single chamber micro-SOFCs was investigated using an air/fuel mixed environment. It was found that the abrupt increase in the resistance is suppressed in the Ru co-sputtered film, as compared to undoped film.

Methane-Air 혼합 Gas에서 구동하는 하니컴 형태의 SC-SOFC (Honeycomb-type Single Chamber SOFC Running on Methane-Air Mixture)

  • 박병탁;윤성필;김현재;남석우;한종희;임태훈;홍성안;이덕열
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.306-309
    • /
    • 2005
  • One of the most critical issues in sol id oxide fuel cell (SOFC)running on hydrocarbon fuels is the risk of carbon formation from the fuel gas. The simple method to reduce the risk of carbon formation from the reactions is to add steam to the fuel stream, leading to the carbon gasification react ion. However, the addition of steam to fuel is not appropriate for the auxiliary power unit (APU) and potable power generation (PPG) systems due to an increase of complexity and bulkiness. In this regard, many researchers have focused on so-called 'direct methane' operation of SOFC, which works with dry methane without coking. However, coking can be suppressed only by the operation with a high current density, which may be a drawback especially for the APU and PPG systems. The single chamber fuel cell (SC-SOFC) is a novel simplification of the conventional SOFC into which a premixed fuel/air mixture is introduced. It relies on the selectivity of the anode and cathode catalysts to generate a chemical potential gradient across the cell. Moreover it allows compact and seal-free stack design. In this study, we fabricated honeycomb type mixed-gas fuel cell (MGFC) which has advantages of stacking to the axial direction and increasing volume power density. Honeycomb-structured SOFC with four channels was prepared by dry pressing method. Two alternative channels were coated with electrolyte and cathode slurry in order to make cathodic reaction sites. We will discuss that the anode supported honeycomb type cell running on mixed gas condition.

  • PDF

패턴된 전극을 가진 표면 전도형 단실형 고체산화물 연료전지의 제조 (Fabrication of Co-Planar Type Single Chamber SOFC with Patterned Electrodes)

  • 안성진;김용범;문주호;이종호;김주선
    • 한국세라믹학회지
    • /
    • 제43권12호
    • /
    • pp.798-804
    • /
    • 2006
  • Co-planar type single chamber solid oxide fuel cell with patterned electrode on a surface of electrolyte has been fabricated by robo-dispensing method and microfluidic lithography. The cells were composed of NiO-GDC-Pd or NiO-SDC cermet anode, $(La_{0.7}Sr_{0.3})_{0.95}MnO_3$ cathode, and yttria stablized zirconia electrolyte. The cell performance at $900^{\circ}C$ was investigated as a function of electrode geometries, such as anode-to-cathode distance, numbers of electrode pairs. Relationship between OCV and I-V characteristics at the optimized operation condition was also studied by DC source meter under the mixed gas condition of methane, air, and nitrogen. An increase of anode-facing-cathode area leads to lower OCV due to intermixing between product gases of anode and cathode, which in turn decreases the oxygen partial pressure difference.

단실형 마이크로 고체 산화물 연료전지의 작동특성 전산모사 (Performance Modeling of Single-Chamber Micro SOFC)

  • 차정화;정찬엽;정용재;김주선;이종호;이해원
    • 한국세라믹학회지
    • /
    • 제42권12호
    • /
    • pp.854-859
    • /
    • 2005
  • Performance of micro scale intermediate temperature solid oxide fuel cell system has been successfully evaluated by computer simulation based on macro modeling. Two systems were studied in this work. The one is designed that the ceria-based electrolyte placed between composite electrodes and the other is designed that electrodes alternately placed on the electrolyte. The injected gas was composed of hydrogen and air. The polarization curve was obtained through a series of calculations for ohmic loss, activation loss and concentration loss. The calculation of each loss was based on the solving of mathematical model of multi physical-phenomena such as ion conduction, fluid dynamics and diffusion and convection by Finite Element Method (FEM). The performance characteristics of SOFC were quantitatively investigated for various structural parameters such as distance between electrodes and thickness of electrolyte.