• 제목/요약/키워드: Single-Hidden-Layer Neural Network

검색결과 43건 처리시간 0.018초

인공지능을 이용한 신규간호사 이직률 예측 (Artificial Intelligence to forecast new nurse turnover rates in hospital)

  • 최주희;박혜경;박지은;이창민;최병관
    • 한국융합학회논문지
    • /
    • 제9권9호
    • /
    • pp.431-440
    • /
    • 2018
  • 본 연구에서는 인공지능 기술 중 구글에서 개발하여 오픈소스로 제공하고 있는 텐서플로우(Tensorflow) 활용하여 신규간호사 이직률을 예측해 보았고, 이를 통해 전략적 인적자원관리 방안을 제시하였다. 부산지역 한 대학병원의 2010년에서 2017년 사이 퇴직한 간호사 데이터 1,018건을 수집하였다. 학습에 사용된 자료는 순서를 임의로 재배열 한 뒤 전체 데이터의 80%를 학습에, 나머지 20%를 테스트에 이용하였다. 활용된 알고리즘은 다중신경망회로(multiple neural network)로서 입력층과 출력층, 3개 층의 은닉층을 가지도록 설계 되었다. 본 연구의 결과 텐서플로우 플랫폼을 활용하여 1년 이내 이직률을 88.7%, 3년 이내 조기 이직률은 79.8%의 정확도로 예측하였고, 대상자들의 퇴직 시 연령은 20대 후반부터 30대에 집중되어 있었다. 가장 높은 빈도를 차지한 이직 사유로는 '결혼, 출산, 육아, 가정 및 개인사정'이었으나, 근무기간 1년 이하 대상자 들의 가장 높은 이직사유는 '업무 부적응 및 대인관계 문제'로 나타났다.

단층 코어넷 다단입력 인공신경망회로의 함수에 관한 구현가능 연구 (The Implementable Functions of the CoreNet of a Multi-Valued Single Neuron Network)

  • 박종준
    • 전기전자학회논문지
    • /
    • 제18권4호
    • /
    • pp.593-602
    • /
    • 2014
  • 인공신경망회로 목표 중의 하나는 최소한의 회로구성으로 구현가능함수를 가능한 많게 하는데 있다. 본 논문은 인공신경망회로의 가장 기본이 되는 하나의 입력노드와 하나의 출력노드, 그리고 입출력에 다단(multi-level)값을 갖는 단층(입출력 2 layer) 다단 코어넷(CoreNet)을 제안하고 그 처리 용량을 구하였고, 무게값 공간에서 구현 가능한 함수와 각 무게값 좌표(${\omega}$,${\theta}$)를 계산으로 구하여 한 함수의 구현 가능 여부를 알 수 있게 하였다. 또 입력 단계(level)값 설정 방법으로 cot(${\sqrt{x}}$)을 제안하였다. 제안된 p단 입력과 q단 출력을 갖는 코어넷의 처리용량(구현 가능한 함수의 수)은 $a_{p,q}={\frac{1}{2}}p(p-1)q^2-{\frac{1}{2}}(p-2)(3p-1)q+(p-1)(p-2)$임을 유도 증명하였다. 시뮬레이션으로 5단(level) 입력 값과, 6단 출력 값을 갖는 1(5)-1(6) 모델을 분석한 결과, cot(${\sqrt{x}}$) 입력 레벨링법에서 총 246가지의 함수가 구현가능 함을 보였다. 이 모델의 시뮬레이션 결과에서는 최대 219개의 함수가 수렴(구현 가능)하였고, 구현가능 함수 중에서 나머지 수렴되지 않은 27개의 함수는 무게값 공간에서 무게값 좌표를 계산하여 구현 가능함을 보였다. 이는 앞에서 제시된 코어넷 처리용량 $a_{5,6}(=246)$에 의한 계산 값과 일치하였다. 무게값 공간에서, 구현 가능한 함수가 차지하는 영역의 함수번호 매김 방법도 제시하여 구현 가능함수의 번호도 알 수 있도록 하였다.

감정예측모형의 성과개선을 위한 Support Vector Regression 응용 (Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model)

  • 김성진;유은정;정민규;김재경;안현철
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.185-202
    • /
    • 2012
  • 오늘날 정보사회에서는 정보에 대한 가치를 인식하고, 이를 위한 정보의 활용과 수집이 중요해지고 있다. 얼굴 표정은 그림 하나가 수천개의 단어를 표현할 수 있듯이 수천 개의 정보를 지니고 있다. 이에 주목하여 최근 얼굴 표정을 통해 사람의 감정을 판단하여 지능형 서비스를 제공하기 위한 시도가 MIT Media Lab을 필두로 활발하게 이루어지고 있다. 전통적으로 기존 연구에서는 인공신경망, 중회귀분석 등의 기법을 통해 사람의 감정을 판단하는 연구가 이루어져 왔다. 하지만 중회귀모형은 예측 정확도가 떨어지고, 인공신경망은 성능은 뛰어나지만 기법 자체가 지닌 과적합화 문제로 인해 한계를 지닌다. 본 연구는 사람들의 자극에 대한 반응으로서 나타나는 얼굴 표정을 통해 감정을 추론해내는 지능형 모형을 개발하는 것을 목표로 한다. 기존 얼굴 표정을 통한 지능형 감정판단모형을 개선하기 위하여, Support Vector Regression(이하 SVR) 기법을 적용하는 새로운 모형을 제시한다. SVR은 기존 Support Vector Machine이 가진 뛰어난 예측 능력을 바탕으로, 회귀문제 영역을 해결하기 위해 확장된 것이다. 본 연구의 제안 모형의 목적은 사람의 얼굴 표정으로부터 쾌/불쾌 수준 그리고 몰입도를 판단할 수 있도록 설계되는 것이다. 모형 구축을 위해 사람들에게 적절한 자극영상을 제공했을 때 나타나는 얼굴 반응들을 수집했고, 이를 기반으로 얼굴 특징점을 도출 및 보정하였다. 이후 전처리 과정을 통해 통계적 유의변수를 추출 후 학습용과 검증용 데이터로 구분하여 SVR 모형을 통해 학습시키고, 평가되도록 하였다. 다수의 일반인들을 대상으로 수집된 실제 데이터셋을 기반으로 제안모형을 적용해 본 결과, 매우 우수한 예측 정확도를 보임을 확인할 수 있었다. 아울러, 중회귀분석이나 인공신경망 기법과 비교했을 때에도 본 연구에서 제안한 SVR 모형이 쾌/불쾌 수준 및 몰입도 모두에서 더 우수한 예측성과를 보임을 확인할 수 있었다. 이는 얼굴 표정에 기반한 감정판단모형으로서 SVR이 상당히 효과적인 수단이 될 수 있다는 점을 알 수 있었다.