• Title/Summary/Keyword: Single strand

Search Result 286, Processing Time 0.026 seconds

Single Nucleotide Polymorphisms on Peroxisome Proliferator-activated Receptor Genes Associated with Fatness Traits in Chicken

  • Meng, H.;Zhao, J.G.;Li, Z.H.;Li, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.9
    • /
    • pp.1221-1225
    • /
    • 2005
  • The peroxisome proliferator-activated receptors (PPARs) are members of a superfamily of nuclear hormone receptors. Lots of studies in rodents and humans have shown that PPARs were involved in lipid metabolism and adipocyte differentiation. The main objective of this work was to detect the single nucleotide polymorphisms (SNPs) in whole coding regions of peroxisome proliferator-activated receptor alpha (PPAR-$\alpha$) and gamma (PPAR-$\gamma$) genes with approach of single strand conformation polymorphism (SSCP) in the chicken population of Arber Acres broiler, Hyline layer and three Chinese native breeds (Shiqiza, Beijing You, Bai'r). Two SNPs of C1029T and C297T were found in chicken PPAR-$\alpha$ and PPAR-$\gamma$ genes respectively and each SNP found three genotypes in the experimental populations. The results showed that the distribution frequency of 3 genotypes in Arber Acres broiler, Hyline layer and Chinese native breeds had significant differences on the PPAR-$\alpha$ and PPAR-$\gamma$ gene respectively (p<0.01). Furthermore, in the PPAR-$\alpha$ gene, the results of least square estimation for genotypes and body composition traits showed the BB genotype birds had higher abdominal fat weight (AFW) and percentage of abdominal fat (AFP) than AA genotype birds (p<0.05). From these we conjecture the PPAR-$\alpha$ and PPAR-$\gamma$ genes were suffered intensive selection during the long term commercial breeding and the PPAR-$\alpha$ gene may be a major gene or linked to the major genes that impact chicken fat metabolism and the SNPs could be used in molecular assistant selection (MAS) as a genetic marker for the chicken fatness traits.

Mutation Screening and Association Study of the Folylpolyglutamate Synthetase (FPGS) Gene with Susceptibility to Childhood Acute Lymphoblastic Leukemia

  • Piwkham, Duangjai;Siriboonpiputtana, Teerapong;Beuten, Joke;Pakakasama, Samart;Gelfond, Jonathan AL;Paisooksantivatana, Karan;Tomlinson, Gail E;Rerkamnuaychoke, Budsaba
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4727-4732
    • /
    • 2015
  • Background: Folylpolyglutamate synthetase (FPGS), an important enzyme in the folate metabolic pathway, plays a central role in intracellular accumulation of folate and antifolate in several mammalian cell types. Loss of FPGS activity results in decreased cellular levels of antifolates and consequently to polyglutamatable antifolates in acute lymphoblastic leukemia (ALL). Materials and Methods: During May 1997 and December 2003, 134 children diagnosed with ALL were recruited from one hospital in Thailand. We performed a mutation analysis in the coding regions of the FPGS gene and the association between single nucleotide polymorphisms (SNPs) within FPGS in a case-control sample of childhood ALL patients. Mutation screening was conducted by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and subsequently with direct sequencing (n=72). Association analysis between common FPGS variants and ALL risk was done in 98 childhood ALL cases and 95 healthy volunteers recruited as controls. Results: Seven SNPs in the FPGS coding region were identified by mutation analysis, 3 of which (IVS13+55C>T, g.1297T>G, and g.1508C>T) were recognized as novel SNPs. Association analysis revealed 3 of 6 SNPs to confer significant increase in ALL risk these being rs7039798 (p=0.014, OR=2.14), rs1544105 (p=0.010, OR= 2.24), and rs10106 (p=0.026, OR=1.99). Conclusions: These findings suggested that common genetic polymorphisms in the FPGS coding region including rs7039789, rs1544105, and rs10106 are significantly associated with increased ALL risk in Thai children.

Analysis of gamma-ray-induced DNA damage in human, mouse and rat peripheral blood lymphocytes using single-cell gel electrophoresis (단세포 전기영동법을 이용한 인체, 마우스 및 랫드 림프구의 방사선에 의해 유발된 DNA 손상 측정)

  • Oh, Heon;Jung, Uhee;Park, Hae-Ran;Kim, Sung-Ho;Jo, Sung-Kee
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.1
    • /
    • pp.41-47
    • /
    • 2004
  • The alkaline single-cell gel electrophoresis (SCGE) assay, called the comet assay, has been applied to detect DNA damage induced by a number of chemicals and biological factors in vivo and in vitro. The DNA damage was analysed by tail moment (TM) and tail length (TL), which were markers of DNA strand breaks in SCGE. Human, mouse and rat peripheral blood lymphocytes (PBLs) were irradiated with different doses of $^{60}Co$ ${\gamma}$-rays, e.g. 1, 2, 4, and 8 Gy at a dose rate of 1 Gy/min. A dose-dependent increase in TM (p<0.01) and TL (p<0.01) was obtained at all the radiation doses (1-8 Gy) in human, mouse and rat PBLs. Mouse PBLs were more sensitive than human PBLs which were in turn more sensitive than rat PBLs when the treated dosages were 1 and 2 Gy. However, human PBLs were more sensitive than mouse PBLs which were in turn more sensitive than rat PBLs when the irradiation dosages were 4 and 8 Gy. Data from all three species could be fitted to a linear-quadratic model. These results indicated that there may be inherent differences in the radio-sensitivity among PBLs of mammalian species.

Effects of Reactive Oxygen Species on DNA Stability in Humnn Spermatozoa

  • Kang, Hee-Gyoo;Kim, Tai-Jeon;Bae, Hyung-Joon;Moon, Hi-Joo;Kim, Myo-Kyung;Kim, Dong-Hoon;Sungwon-Han;Lee, Ho-Joon;Yang, Hye-Young
    • Biomedical Science Letters
    • /
    • v.7 no.4
    • /
    • pp.181-190
    • /
    • 2001
  • This study was designed to investigate the effects of reactive oxygen species (ROS) on DNA stability in human spermatozoa. To verify human spermatozoa were incubated with xanthine-xanthine oxidase (X 100$\mu$M-XO 50 mlU ~ 400 mIU), $H_2O_2$ (125 $\mu$M ~ 1 mM), sodium nitroprusside (SNP 0.1 $\mu$M ~ 100 $\mu$M) or lymphocyte. Otherwise, spermatozoa were incubated under low $O_2$ (5%) condition. Damage of sperm DNA was analyzed by single cell electrophoresis (Comet assay) and flow cytometry after acridine orange staining. In the presence of ROS, there was increase in DNA damage. The rate of DNA single strand breakage (9.0$\pm$1.0% ~ 46.0$\pm$4.6%) and DNA fragmentation (7.51$\pm$1.0% ~ 29.5$\pm$4.6%) were similar regardless of the kinds of ROS and exposure time. DNA damage in the lower $O_2$ condition (5%) was lower than ambient $O_2$ condition (20%). Taken together, it suggested that sperm DNA might be damaged by ROS. In the presence of ROS, increase in DNA damage and chromatin instability was obvious in spite of short exposure. Although present study reconfirmed that sperm incubation in the low concentration of ROS have the benefit m the induction of capacitation and Ah, the increase in DNA damage by ROS and possible genetic problem should be considered before the human trials.

  • PDF

Detection of DNA Damage in Carp Using Single-Cell Gel Electrophoresis Assay for Genotoxicity Monitoring

  • Jin, Hai-Hong;Lee, Jae-Hyung;Hyun, Chang-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.268-275
    • /
    • 2004
  • To investigate the potential application of the single-cell gel electrophoresis (SCGE) assay to carp as an aquatic pollution monitoring technique, gill, liver, and blood cells were isolated from carp exposed to a direct-acting mutagen, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), or indirect mutagen, $benzo[\alpha]pyrene$ $(B[\alpha]P)$, then the DNA strand breakage was analyzed using the assay. Based on testing 5 different cell isolation methods and 6 electrophoretic conditions, the optimized assay conditions were found to be cell isolation by filter pressing and electrophoresis at a lower voltage and longer running time (at 0.4 V/cm for 40 min). In preliminary experiments, gill and liver cells isolated from carp exposed to MNNG in vitro exhibited DNA damage signals even with 0.5 ppb exposure, which is a much higher dose than previously reported. In the gill cells isolated from carp exposed to 0.01-0.5 ppm MNNG in vivo, significant dose-and time-dependent increases were observed in the tail for 4 days. As such, the linear correlation between the relative damage index (RDI) values and time for each dose based on the initial 48-h exposure appeared to provide effective criteria for the genotoxicity monitoring of direct-acting mutagenic pollution. In contrast, the in vivo exposure of carp to 0.25-1.0 ppm of $B[\alpha]P$ for 7 days resulted in dose-and time-dependent responses in the liver cells, in which 24-h delayed responses for metabolizing activation and gradual repair after 48 h were also observed. Thus, the negative-sloped linear correlation between the RDI and time at each dose based on the initial 48 h appeared to provide more effective criteria for the genotoxicity monitoring of indirect mutagenic pollution.

Analysis of the Manufacturing Techniques for the KwangDahoe Tying on the Sword in Joseon Dynasty (조선시대 도검 패용 광다회의 제작기법 분석)

  • Baek, Je-Sun;Chung, Kwang-Young
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.3
    • /
    • pp.64-87
    • /
    • 2017
  • Dahoe is a traditional braid in Joseon Dynasty. There are many Dahoe artifacts, which can give us a glimpse of the costume, culture, and life of that era. The study of Dahoe is necessary in various fields, but it is difficult because this manufacturing technique has been passed down from hand to hand. Few studies have been done so far. This research examines the manufacturing technique of KwangDahoe which is passed down by Maedeupjang (Decorative Knotting) and is generally used for knotting and/or tying objects. The main characteristic of TieKwangDahoe, made through the same method as WonDahoe, is the square hole in the middle. It was impossibile to remake the original braid because there is no confirmed number of the strand. Especially it is very difficult to do conservation and restoration on serious degradation state of the fiber. Therefore, it is necessary to analyze the non-destructive manufacturing techniques method for Dahoe and assess their applicability. First, we analyzed the artifacts' manufacturing technique based on the database of the Dahoe's manufacturing technique. In order to do that, we undertook schematization, restoration, morphological analyzation of the Dahoe. And then, X-ray CT scans were performed to improve the reliability of the DB. These results of scanning were interpreted based on the manufacturing technique. The selected Tie-KwangDahoe on the sword for the study are artifacts including artistic value and symbolism in Joseon Dynasty. Based on the analysis of the manufacturing technique, we found that both artifacts were made of 20-strand braid of single cross according to the length-scale measure. It was manufactured using 8-strand on left-right side, 12-strand on front-back side by the braiding manufacturing technique method Finally, this research suggests non-destructive analysis method of Dahoe's manufacturing technique is based on the database and the analysis results. I hope this research can be useful in various professional fields of Dahoe in the future. Moreover, I hope this can be of any help in preserving Korean cultural heritage.

The Hepatotprotective and Antioxidative Effects of Onion (Allium cepa) Extracts in Rat Hepatocyte Primary Culture (양파(Allium cepa) 추출물의 간보호 및 항산화 효과)

  • Lim Sang-Cheol;Rhim Tae-Jin
    • Korean Journal of Plant Resources
    • /
    • v.18 no.3
    • /
    • pp.470-478
    • /
    • 2005
  • The objective of present study was to investigate the hepatoprotective and antioxidative effects of onion extracts. Primary cultures of rat hepatocytes were incubated with 1.5 mM tort-butyl hydroperoxide(t-BHP), potent oxidizing agent to liver, for 1 hr in the presence or absence of various concentrations (0, 0.01, 0.05, 0.1 or 0.3 mg/ml) of onion extract. Incubation with t-BHP increased glutamic oxaloacetic transaminase(GOT) and lactate dehydrogenase(LDH) acitivities and thiobarbituric acid reactive substances(TBARS) concentration but decreased 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT) reduction. Onion extracts at the concentration of 0.05 mg/ml decreased t-BHP-induced GOT and LDH activities. Onion extract at the concentration of 0.1 mg/ml increased t-BHP-induced MTT reduction. Onion extract at the concentration of 0.01 mg/ml decreased t-BHP-induced TBARS concentration. Taken together, onion extracts prevented t-BHP-induced hepatocyte injury and lipid peroxidation. Catalase, glutathione peroxidase(GSH-Px) and glutathione reductase(GSH-Rd) activities of hepatocytes were significantly decreased by t-BHP. Onion extracts at the concentration of 0.1 mg/ml prevented t-BHP-induced decrease in catalase, GSH-Px and GSH-Rd activities. Onion extracts prevented hydroxyl radical-induced single-strand breakage in dose-dependent manner when plasmid DNA was incubated with various concentrations of onion extracts in the presence of Fenton reagents producing hydroxyl radical. These results demonstrate that onion extracts suppressed t-BHP-induced cytoctoxicity, decreased viability and lipid peroxidation and increased GSH-Px, GSH-Rd and catalase activities. Thus hepatoprotective and antioxidant effects of onion extract seem to be due to, at least in part, the increase in antioxidant enzyme activities as well as prevention from hydroxyl radical-induced oxidation, followed by inhibition of lipid peroxidation.

열목어 생식선자극호르몬의 cDNA cloning 및 CHO 세포를 이용한 발현검토

  • 최은주;손영창
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.21-21
    • /
    • 2003
  • 경골어류의 뇌하수체에서는 두 종류의 생식선자극호르몬 (FSH, LH)이 생산되며, 이 호르몬들은 공통적인 α 쇄와 특이적인 β 쇄를 가진다. 연어과 어종들에서, FSH는 난황형성과 정자형성의 역할을 하며, LH는 배우자의 최종성숙을 조절한다. 냉수성 고유어종인 열목어 (Brachymystax lenok)의 멸종을 방지하고 종묘생산을 원활히 하기 위하여 먼저 열목어의 GTHα, FSHβ 및 LHβ 쇄를 cloning하여 염기서열을 결정하였다. 열목어 GTHα, FSHβ 및 LHβ의 cDNA는 산천어의 해당 cDNA와 높은 상동성 (각각 84, 95, 98%)을 보였다. 다음으로 기능적인 생식선자극호르몬을 제작하기 위해서 2개의 쇄를 single-strand로 연결하여 진핵세포를 숙주로하는 시스템에서 생식선자극호르몬을 생산할 수 있는 구조체인 FSHβ-GTHα (235 amino acids) 와 LHβ-GTHα (240 amino acids)를 각각 재조합하였다. 또한 각각의 융합단백질 생산용 구조체의 3'-말단에는 단백질추출이 용이하도록 histidine×6 구조를 첨가하였다. 이상의 단일쇄 FSH와 LH 유전자재조합 산물을 포유동물 유래의 세포 (CHO-K1)에 liposome chemical을 사용하여 유전자도입 후 세포에서 분비되는 단백질을 모니터링하였다. 배지를 부분정제한 후 SDS-PACE로 조사한 결과, LH 재조합 유전자를 도입한 후 48-60 시간째에 약 25 kDa의 단백질로서 관찰되었다. 현재 FSH 재조합 유전자에 대해서도 조사중이며, 향후 이를 재료로 하여 기능형 생식선자극호르몬을 생산하고 추출하기 위한 연구가 계속적으로 수행 될 것이다.

  • PDF

Vitamin B6 Deficiency, Genome Instability and Cancer

  • Wu, Xia-Yu;Lu, Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5333-5338
    • /
    • 2012
  • Vitamin B6 functions as a coenzyme in >140 enzymatic reactions involved in the metabolism of amino acids, carbohydrates, neurotransmitters, and lipids. It comprises a group of three related 3-hydroxy-2-methyl-pyrimidine derivatives: pyridoxine (PN), pyridoxal (PL), pyridoxamine (PM) and their phosphorylated derivatives [pyridoxal 5'-phosphate (PLP) and pyridoxamine 5'-phosphate (PMP)], In the folate metabolism pathway, PLP is a cofactor for the mitochondrial and cytoplasmic isozymes of serine hydroxymethyltransferase (SHMT2 and SHMT1), the P-protein of the glycine cleavage system, cystathionine ${\beta}$-synthase (CBS) and ${\gamma}$-cystathionase, and betaine hydroxymethyltransferase (BHMT), all of which contribute to homocysteine metabolism either through folate-mediated one-carbon metabolism or the transsulfuration pathway. Folate cofactors carry and chemically activate single carbons for the synthesis of purines, thymidylate and methionine. So the evidence indicates that vitamin B6 plays an important role in maintenance of the genome, epigenetic stability and homocysteine metabolism. This article focuses on studies of strand breaks, micronuclei, or chromosomal aberrations regarding protective effects of vitamin B6, and probes whether it is folate-mediated one-carbon metabolism or the transsulfuration pathway for vitamin B6 which plays critical roles in prevention of cancer and cardiovascular disease.