• Title/Summary/Keyword: Single phase control

Search Result 1,102, Processing Time 0.035 seconds

Digital Current Control Scheme for Boost Single-Phase PFC Converter Based on Virtual d-q Transformation (가상 d-q 변환을 이용한 승압형 단상 PFC 컨버터의 디지털 전류 제어 방법)

  • Lee, Kwang-Woon;Kim, Hack-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.54-60
    • /
    • 2020
  • A digital current control scheme using virtual d-q transformation for a boost single-phase power factor correction (PFC) converter is proposed. The use of virtual d-q transformation in single-phase power converters is known to improve current control performance. However, the conventional virtual d-q transformation-based digital current control scheme cannot be directly applied to the boost single-phase PFC converter because the current and average voltage waveforms of the inductor used in the converter are not sinusoidal. To cope with this problem, this study proposes a virtual sinusoidal signal generation method that converts the current and average voltage waveform of the inductor into a sinusoidal waveform synchronized with the grid. Simulation and experimental results are provided to show that the virtual d-q transformation-based digital current control is successfully applied to the boost single-phase PFC converter with the aid of the proposed virtual sinusoidal signal generation method.

The phase angle driving adaptive control of single-induction motor using one-chip micro controller (원칩 마이컴을 이용한 단상유도전동기의 위상각 구동 적응제어)

  • 이형상;김정도;김이경;이택종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.675-679
    • /
    • 1992
  • In industry, the speed control of single-phase induction motor in domestic use is generally controlled by a simple ON-OFF or PID control method. However, in this case, in order to have a good speed regulating characteristics, itself should be modified in accordance with the optimum PID factors which are varied each time operating speed changes. Shortening the development time and saving the cost which are needed to modify the controller is a major problem to be solved now in industry. In order to alleviate the above difficulties, it is proposed to apply adaptive control technique using MRFAC(Model Reference Following Adaptive Control) for the speed control of single-phase induction motor which has scarcely been studied. In this paper, the above speed control technique is achieved using MCS-96 one chip micro controller with a good speed control characteristics and it is expetted to open a wide application field in the speed control of single-phase induction motor in the future.

  • PDF

Digital PLL Control for Phase-Synchronization of Grid-Connected PV System (계통 연계형 태양광 발전 시스템의 위상 동기화를 위한 디지털 PLL 제어)

  • 김용균;최종우;김흥근
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.9
    • /
    • pp.562-568
    • /
    • 2004
  • The frequency and phase angle of the utility voltage are important in many industrial systems. In the three-phase system, they can be easily known by using the utility voltage vector. However, in the case of single phase system, there are some difficulties in detecting the information of utility voltage. In conventional system, the zero-crossing detection method is widely used, but could not obtain the information of utility voltage instantaneously. In this paper, the new digital PLL control using virtual two phase detector is proposed with a detailed analysis of single-phase digital PLL control for utility connected systems. The experimental results under various utility conditions are presented and demonstrate an excellent phase tracking capability in the single-phase grid-connected operation.

A Study on the Main Winding Control of Single Phase Induction Motor using One-Chip Micom (원칩 마이컴을 이용한 단상유도전동기의 주권선 제어에 관한 연구)

  • Park, Su-Gang;Baek, Hyeong-Rae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.1
    • /
    • pp.70-76
    • /
    • 2000
  • This paper describes a one-chip micom controller and phase angle control method for self-starting and energy saving of single-phase induction motor. The proposed method is based on the optimal efficiency control which is running by variable phase angle of main winding current such as to maintain the maximum efficiency characteristics of the motor, in voltage control with TRIAC. Experiments are focused on a capacitor starting single-phase induction motor. The optimal energy saving by variable phase angle control are verified by experimental results. Also, auxiliary winding was controlled by electronic starting switch.

  • PDF

Static VAR Compensator-Based Voltage Regulation for Variable-Speed Prime Mover Coupled Single- Phase Self-Excited Induction Generator

  • Ahmed, Tarek;Noro, Osamu;Sato, Shinji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.185-196
    • /
    • 2003
  • In this paper, the single-phase static VAR compensator (SVC) is applied to regulate and stabilize the generated terminal voltage of the single-phase self-excited induction generator (single-phase SEIG) driven by a variable-speed prime mover (VSPM) under the conditions of the independent inductive load variations and the prime mover speed changes The conventional fixed gain PI controller-based feedback control scheme is employed to adjust the equivalent capacitance of the single-phase SVC composed of the fixed excitation capacitor FC in parallel with the thyristor switched capacitor TSC and the thyristor controlled reactor TCR The feedback closed-loop terminal voltage responses in the single-phase SEIG coupled by a VSPM with different inductive passive load disturbances using the single-phase SVC with the PI controller are considered and discussed herem. A VSPM coupled the single-phase SEIG prototype setup is established. Its experimental results are illustrated as compared with its simulation ones and give good agreements with the digital simulation results for the single-phase SEIG driven by a VSPM, which is based on the SVC voltage regulation feedback control scheme.

Fault-Tolerant Control of Five-Phase Induction Motor Under Single-Phase Open

  • Kong, Wubin;Huang, Jin;Kang, Min;Li, Bingnan;Zhao, Lihang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.899-907
    • /
    • 2014
  • This paper deals with fault-tolerant control of five-phase induction motor (IM) drives under single-phase open. By exploiting a decoupled model for five-phase IM under fault, the indirect field-oriented control ensures that electromagnetic torque oscillations are reduced by particular magnitude ratio currents. The control techniques are developed by the third harmonic current injection, in order to improve electromagnetic torque density. Furthermore, Proportional Resonant (PR) regulator is adopted to realize excellent current tracking performance in the phase frame, compared with Proportional Integral (PI) and hysteresis regulators. The analysis and experimental results confirm the validity of fault-tolerant control under single-phase open.

Modified RCC MPPT Method for Single-stage Single-phase Grid-connected PV Inverters

  • Boonmee, Chaiyant;Kumsuwan, Yuttana
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1338-1348
    • /
    • 2017
  • In this study, a modified ripple correlation control (RCC) maximum-power point-tracking (MPPT) algorithm is proposed for a single-stage single-phase voltage source inverter (VSI) on a grid-connected photovoltaic system (GCPVS). Unlike classic RCC methods, the proposed algorithm does not require high-pass and low-pass filters or the increment of the AC component filter function in the voltage control loop. A simple arithmetic mean function is used to calculate the average value of the photovoltaic (PV) voltage, PV power, and PV voltage ripples for the MPPT of the RCC method. Furthermore, a high-accuracy and high-precision MPPT is achieved. The performance of the proposed algorithm for the single-stage single-phase VSI GCPVS is investigated through simulation and experimental results.

The Low Current Starting Simulation of a Single Phase Induction Motor Using Sliding Mode Control (슬라이딩 모드 제어를 이용한 단상 유도전동기의 저 전류 기동 시뮬레이션)

  • Kim, Hyo-Ki;Lee, Byung-Ha
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.44-53
    • /
    • 2007
  • In this paper, the Sliding Mode Controller is applied to reduce the starting current of the single phase induction motor. The input voltage to the single phase induction motor is controlled so that the starting current of the motor may be maintained within the rating value and the velocity is also controlled, by adjusting the switching function of the Sliding Mode Controller. The switching of sliding control made appropriately with regard to velocity error signal and acceleration signal. It is shown that the starting characteristics of the single phase induction motor(SPIM) can be greatly enhanced through the sliding control of single phase induction motor.

Comparison of Current Control Method for Single-phase PFC converter with 1-switch Voltage Doubler Strategy (단일 스위치 배전압 방식의 단상 PFC 컨버터의 전류 제어기법 비교)

  • Ku, Dae-Kwan;Ji, Jun-Keun;Cha, Guee-Soo;Lim, Seung-Beom;Hong, Soon-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • This paper describes the performance comparison results for current controller of a single-phase PFC converter with 1-switch voltage doubler strategy for single-phase double-conversion UPS(Uninterruptible Power Supply). A single-phase PFC converter with 1-switch voltage doubler strategy needs a diode bridge and one bidirectional active switch. Thus it is possible to reduce the material cost. However, the study results of current controller design and comparison of current control method has not been known after the converter circuit was proposed. For the performance comparison of current control, single-phase 3 kVA double-conversion UPS was tested. The performance of PI and PR current controller is experimentally confirmed with followings - input current reference tracking, input power factor correction and input current THD suppression.

A NEW SINGLE-PHASE Z-SOURCE CYCLOCONVERTER

  • Khai, Nguyen Minh;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.318-320
    • /
    • 2007
  • Single-phase cycloconverters are widely used for ac-ac power conversion especially for speed control of ac drives. In this paper, a new single-phase to single-phase Z-source cycloconverter topology is proposed. The proposed single-phase Z-source cycloconverter can boost to a desired voltage with various frequency. Thus, it is called a frequency step-down and amplitude voltage step-up converter. The operating principle of the proposed topology is presented. Analysis and simulation for this single-phase Z-source cycloconverter are also presented.

  • PDF