• Title/Summary/Keyword: Single layer reticulated dome

Search Result 4, Processing Time 0.016 seconds

Effects of geometrical initial imperfection in proportioning member sections of single layer reticulated dome (단층 래티스 돔의 단면산정에 있어서의 형상초기불완전의 영향)

  • Kim, Jong-Min;HwangBo, Seok;Han, Sang-Eul;Kwun, Teak-Jin
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.83-88
    • /
    • 2004
  • First author proposed a proportioning method for member sections of a single layer reticulated dome subjected to uniform and non-uniform load without any geometrical initial imperfection, and discussed the validity and effectiveness of the method which was based on linear buckling stress and a knock down factor. However, buckling of a single layer reticulated dome is strongly affected by initial imperfection. It is well known that geometrical initial imperfections reduce the nonlinear buckling capacity of a single layer raticulated dome. Thus, structural engineers may be recommended to reflect the effects of geometrical initial imperfections in proportioning member sections. In this paper, firstly, the presented proportioning method by first author is applied to dome without consideration of any imperfections and the thickness and diameter of each member are determined. Secondly, the load bearing capacities of the proportioned domes are checked with the imperfection, by the inelastic buckling analysis.

  • PDF

Analysis of key elements of single-layer dome structures against progressive collapse

  • Zhang, Qian;Huang, Wenxing;Xu, Yixiang;Cai, Jianguo;Wang, Fang;Feng, Jian
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.257-264
    • /
    • 2022
  • The analysis of the progressive collapse resistance of structures is a well-known issue among structural engineers. Large-span reticulated dome structures are commonly utilized in large public buildings, necessitating research into their progressive collapse resistance to assure user safety. The most significant part of improving the structural resilience of reticulated domes is to evaluate their key elements. Based on a stiffness-based evaluation approach, this work offers a calculating procedure for element importance coefficient. For both original and damaged structures, evaluations are carried out using the global stiffness matrix and the determinant. The Kiewitt, Schwedler, and Sunflower reticulated domes are investigated to explore the distribution characteristic of element importance coefficients in the single-layer dome structures. Moreover, the influences of the load levels, load distributions, geometric parameters and topological features are also discussed. The results can be regarded as the initial concept design reference for single-layer reticulated domes.

A dominant vibration mode-based scalar ground motion intensity measure for single-layer reticulated domes

  • Zhong, Jie;Zhi, Xudong;Fan, Feng
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.245-264
    • /
    • 2016
  • A suitable ground motion intensity measure (IM) plays a crucial role in the seismic performance assessment of a structure. In this paper, we introduce a scalar IM for use in evaluating the seismic response of single-layer reticulated domes. This IM is defined as the weighted geometric mean of the spectral acceleration ordinates at the periods of the dominant vibration modes of the structure considered, and the modal strain energy ratio of each dominant vibration mode is the corresponding weight. Its applicability and superiority to 11 other existing IMs are firstly investigated in terms of correlation with the nonlinear seismic response, efficiency and sufficiency using the results of incremental dynamic analyses which are performed for a typical single-layer reticulated dome. The hazard computability of this newly proposed IM is also briefly discussed and illustrated. A conclusion is drawn that this dominant vibration mode-based scalar IM has the characteristics of strong correlation, high efficiency, good sufficiency as well as hazard computability, and thereby is appropriate for use in the prediction of seismic response of single-layer reticulated domes.

Optimum topology design of geometrically nonlinear suspended domes using ECBO

  • Kaveh, A.;Rezaei, M.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.667-694
    • /
    • 2015
  • The suspended dome system is a new structural form that has become popular in the construction of long-span roof structures. Suspended dome is a kind of new pre-stressed space grid structure that has complex mechanical characteristics. In this paper, an optimum topology design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The length of the strut, the cable initial strain, the cross-sectional area of the cables and the cross-sectional size of steel elements are adopted as design variables and the minimum volume of each dome is taken as the objective function. The topology optimization on lamella dome is performed by considering the type of the joint connections to determine the optimum number of rings, the optimum number of joints in each ring, the optimum height of crown and tubular sections of these domes. A simple procedure is provided to determine the configuration of the dome. This procedure includes calculating the joint coordinates and steel elements and cables constructions. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Constitution). This paper explores the efficiency of lamella dome with pin-joint and rigid-joint connections and compares them to investigate the performance of these domes under wind (according to the ASCE 7-05), dead and snow loading conditions. Then, a suspended dome with pin-joint single-layer reticulated shell and a suspended dome with rigid-joint single-layer reticulated shell are discussed. Optimization is performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating optimal design for suspended domes.