• Title/Summary/Keyword: Single image

Search Result 2,257, Processing Time 0.034 seconds

Detection of Surface Cracks in Eggshell by Machine Vision and Artificial Neural Network (기계 시각과 인공 신경망을 이용한 파란의 판별)

  • 이수환;조한근;최완규
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.409-414
    • /
    • 2000
  • A machine vision system was built to obtain single stationary image from an egg. This system includes a CCD camera, an image processing board and a lighting system. A computer program was written to acquire, enhance and get histogram from an image. To minimize the evaluation time, the artificial neural network with the histogram of the image was used for eggshell evaluation. Various artificial neural networks with different parameters were trained and tested. The best network(64-50-1 and 128-10-1) showed an accuracy of 87.5% in evaluating eggshell. The comparison test for the elapsed processing time per an egg spent by this method(image processing and artificial neural network) and by the processing time per an egg spent by this method(image processing and artificial neural network) and by the previous method(image processing only) revealed that it was reduced to about a half(5.5s from 10.6s) in case of cracked eggs and was reduced to about one-fifth(5.5s from 21.1s) in case of normal eggs. This indicates that a fast eggshell evaluation system can be developed by using machine vision and artificial neural network.

  • PDF

Absolute Depth Estimation Based on a Sharpness-assessment Algorithm for a Camera with an Asymmetric Aperture

  • Kim, Beomjun;Heo, Daerak;Moon, Woonchan;Hahn, Joonku
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.514-523
    • /
    • 2021
  • Methods for absolute depth estimation have received lots of interest, and most algorithms are concerned about how to minimize the difference between an input defocused image and an estimated defocused image. These approaches may increase the complexity of the algorithms to calculate the defocused image from the estimation of the focused image. In this paper, we present a new method to recover depth of scene based on a sharpness-assessment algorithm. The proposed algorithm estimates the depth of scene by calculating the sharpness of deconvolved images with a specific point-spread function (PSF). While most depth estimation studies evaluate depth of the scene only behind a focal plane, the proposed method evaluates a broad depth range both nearer and farther than the focal plane. This is accomplished using an asymmetric aperture, so the PSF at a position nearer than the focal plane is different from that at a position farther than the focal plane. From the image taken with a focal plane of 160 cm, the depth of object over the broad range from 60 to 350 cm is estimated at 10 cm resolution. With an asymmetric aperture, we demonstrate the feasibility of the sharpness-assessment algorithm to recover absolute depth of scene from a single defocused image.

Deep Multi-task Network for Simultaneous Hazy Image Semantic Segmentation and Dehazing (안개영상의 의미론적 분할 및 안개제거를 위한 심층 멀티태스크 네트워크)

  • Song, Taeyong;Jang, Hyunsung;Ha, Namkoo;Yeon, Yoonmo;Kwon, Kuyong;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.1000-1010
    • /
    • 2019
  • Image semantic segmentation and dehazing are key tasks in the computer vision. In recent years, researches in both tasks have achieved substantial improvements in performance with the development of Convolutional Neural Network (CNN). However, most of the previous works for semantic segmentation assume the images are captured in clear weather and show degraded performance under hazy images with low contrast and faded color. Meanwhile, dehazing aims to recover clear image given observed hazy image, which is an ill-posed problem and can be alleviated with additional information about the image. In this work, we propose a deep multi-task network for simultaneous semantic segmentation and dehazing. The proposed network takes single haze image as input and predicts dense semantic segmentation map and clear image. The visual information getting refined during the dehazing process can help the recognition task of semantic segmentation. On the other hand, semantic features obtained during the semantic segmentation process can provide cues for color priors for objects, which can help dehazing process. Experimental results demonstrate the effectiveness of the proposed multi-task approach, showing improved performance compared to the separate networks.

Unsupervised Multispectral Image Segmentation Based on 1D Combined Neighborhood Differences (1D 통합된 근접차이에 기반한 자율적인 다중분광 영상 분할)

  • Saipullah, Khairul Muzzammil;Yun, Byung-Choon;Kim, Deok-Hwan
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.625-628
    • /
    • 2010
  • This paper proposes a novel feature extraction method for unsupervised multispectral image segmentation based in one dimensional combined neighborhood differences (1D CND). In contrast with the original CND, which is applied with traditional image, 1D CND is computed on a single pixel with various bands. The proposed algorithm utilizes the sign of differences between bands of the pixel. The difference values are thresholded to form a binary codeword. A binomial factor is assigned to these codeword to form another unique value. These values are then grouped to construct the 1D CND feature image where is used in the unsupervised image segmentation. Various experiments using two LANDSAT multispectral images have been performed to evaluate the segmentation and classification accuracy of the proposed method. The result shows that 1D CND feature outperforms the spectral feature, with average classification accuracy of 87.55% whereas that of spectral feature is 55.81%.

TSDnet: Three-scale Dense Network for Infrared and Visible Image Fusion (TSDnet: 적외선과 가시광선 이미지 융합을 위한 규모-3 밀도망)

  • Zhang, Yingmei;Lee, Hyo Jong
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.656-658
    • /
    • 2022
  • The purpose of infrared and visible image fusion is to integrate images of different modes with different details into a result image with rich information, which is convenient for high-level computer vision task. Considering many deep networks only work in a single scale, this paper proposes a novel image fusion based on three-scale dense network to preserve the content and key target features from the input images in the fused image. It comprises an encoder, a three-scale block, a fused strategy and a decoder, which can capture incredibly rich background details and prominent target details. The encoder is used to extract three-scale dense features from the source images for the initial image fusion. Then, a fusion strategy called l1-norm to fuse features of different scales. Finally, the fused image is reconstructed by decoding network. Compared with the existing methods, the proposed method can achieve state-of-the-art fusion performance in subjective observation.

Matching Points Filtering Applied Panorama Image Processing Using SURF and RANSAC Algorithm (SURF와 RANSAC 알고리즘을 이용한 대응점 필터링 적용 파노라마 이미지 처리)

  • Kim, Jeongho;Kim, Daewon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.144-159
    • /
    • 2014
  • Techniques for making a single panoramic image using multiple pictures are widely studied in many areas such as computer vision, computer graphics, etc. The panorama image can be applied to various fields like virtual reality, robot vision areas which require wide-angled shots as an useful way to overcome the limitations such as picture-angle, resolutions, and internal informations of an image taken from a single camera. It is so much meaningful in a point that a panoramic image usually provides better immersion feeling than a plain image. Although there are many ways to build a panoramic image, most of them are using the way of extracting feature points and matching points of each images for making a single panoramic image. In addition, those methods use the RANSAC(RANdom SAmple Consensus) algorithm with matching points and the Homography matrix to transform the image. The SURF(Speeded Up Robust Features) algorithm which is used in this paper to extract featuring points uses an image's black and white informations and local spatial informations. The SURF is widely being used since it is very much robust at detecting image's size, view-point changes, and additionally, faster than the SIFT(Scale Invariant Features Transform) algorithm. The SURF has a shortcoming of making an error which results in decreasing the RANSAC algorithm's performance speed when extracting image's feature points. As a result, this may increase the CPU usage occupation rate. The error of detecting matching points may role as a critical reason for disqualifying panoramic image's accuracy and lucidity. In this paper, in order to minimize errors of extracting matching points, we used $3{\times}3$ region's RGB pixel values around the matching points' coordinates to perform intermediate filtering process for removing wrong matching points. We have also presented analysis and evaluation results relating to enhanced working speed for producing a panorama image, CPU usage rate, extracted matching points' decreasing rate and accuracy.

Elemental Image and Sub Image Generation of Integral Imaging using 4-step Phase-shifting Digital holography of 3-dimensional Object (3차원 물체의 4단계 위상천이 디지털 홀로그래피를 이용한 접적영상의 요소영상과 부영상의 생성)

  • Jeong, Min-Ok;Kim, Nam;Park, Jae-Hyeong;Jeon, Seok-Hui
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.263-264
    • /
    • 2009
  • We propose a method synthesizing elemental images and sub-images for the integral imaging using phase-shifting digital holography. From acquired single 4-step phase-shifting digital holography, we can generate elemental images and sub-images for any lens array specifications.

  • PDF

Study on View-independent Hand Posture Recognition

  • Jang, Hyoyoung;Bien, Zeungnam
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.50-53
    • /
    • 2003
  • We describe a method for estimating new hand views from a single 2D hand image using decomposed approach with subgroup-based scheme. With this method, we can get the simplicity in the sense of computation by comparing the image with models in the promising subgroup instead of comparing with all models. It shows more effectiveness in recognition by process depend on each subgroup and easy of extension.

  • PDF

Improved Single Feistel Circuit Supporter by A Chaotic Genetic Operator

  • JarJar, Abdellatif
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.165-174
    • /
    • 2020
  • This document outlines a new color image encryption technology development. After splitting the original image into 240-bit blocks and modifying the first block by an initialization vector, an improved Feistel circuit is applied, sponsored by a genetic crossover operator and then strong chaining between the encrypted block and the next clear block is attached to set up the confusion-diffusion and heighten the avalanche effect, which protects the system from any known attack. Simulations carried out on a large database of color images of different sizes and formats prove the robustness of such a system.

Multiview Autostereoscopic Display Technology and Applications

  • Kim, Sung-Sik;Shestak, Sergei A.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.463-467
    • /
    • 2003
  • Optical architecture and experimental results on low cost multiview autostereoscopic projection display are presented. The display, containing only one high resolution projection panel and only one projection lens is capable of displaying multiview autostereoscopic images. Key components, applied in the display are segmented mirror for splitting the projection beam and one-dimensional diffuser with slanted axis of diffusion for viewing zone formation. Image distortions, inherent in the display have been compensated with opposite sign pre-distortion of projected perspective images.

  • PDF