• Title/Summary/Keyword: Single hole

Search Result 499, Processing Time 0.025 seconds

A Study on Optimum Cutting Conditions and Tool Life in Deep Hole Drilling for SM55C by BTA Drill (BTA드릴에 의한 SM55C의 심공가공시 최적절삭조건과 공구수명에 관한 연구)

  • 장성규;전언찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.43-49
    • /
    • 1998
  • The deep hole drilling has an increasing demands because of its wide range applications and its good productivity. The BTA drills are capable of machining for having a large length to diameter ratio in single pass to higher degree of accuracy and surface finish. It's really necessary that the investigation for the deep hole drilling by the BTA drill because its required quality should be satisfied with single pass. This thesis deal with the experimental results obtained during single tube BTA system machining on SM55C steel for different machining conditions. The results of the investigation on the optimum cutting condition selecting and tool life reveals as follows. (1) The optimum cutting condition was cutting speed, V = 42 m/min and feed speed. F = 90 mm/min and the tool life was about 10 meters. (2) Surface roughness was $12\mum$ and the roundness was less using $16mum$single edge BTA drill in testing cutting condition.

  • PDF

Effect of Nozzle Hole Number on Fuel Spray and Emission Characteristics of High Pressure Diesel Injector (고압 디젤 인젝터 노즐 홀 수가 연료 분무 및 배기 특성에 미치는 영향)

  • Chon, Mun Soo
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.210-215
    • /
    • 2012
  • This paper This paper presents effect of nozzle hole number on spray characteristics and engine performance. Experiments were conducted to measure spray penetration and SMD distributions using a spray visualization system and PDPA (phase Doppler particle analyzer) system. In addition, engine performance and emission characteristics were measured using a single cylinder engine and emssion measurement systems. Results showed that 8-hole-injector exhibits improved spray performances. Furthermore, soot emission was decreased with 8-hole-injector, compared to that of 6-hole-injector.

Thickness Effect of Double Layered Sheet on Burr Formation during Micro-Via Hole Punching Process (미세 비아홀 펀칭 공정 중 이종 재료 두께에 따른 버 생성)

  • 신승용;임성한;주병윤;오수익
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.65-71
    • /
    • 2004
  • Recent electronic equipment becomes smaller, more functional, and more complex. According to these trends, LTCC(low temperature co-fired ceramic) has been emerged as a promising technology in packaging industry. It consists of multi-layer ceramic sheet, and the circuit has 3D structure. In this technology via hole formation plays an important role because it provides an electric path for the packaging interconnection network. Therefore via hole qualify is very important for ensuring performance of LTCC product. Via holes are formed on the green sheet that consists of ceramic(before sintering) layer and PET(polyethylene terephthalate) one. In this paper we found the correlation between hole quality and process condition such as PET thickness and ceramic thickness. The shear behavior of double layer sheet by micro hole punching which is different from that of single layer one was also discussed.

Study of the Plating Methods in the Experimental Model of Mandibular Subcondyle Fracture (하악골 과두하부 골절 실험모델에서 견고정을 위한 플레이트 고정방법 연구)

  • Lee, Won;Kang, Dong Hee
    • Archives of Craniofacial Surgery
    • /
    • v.12 no.1
    • /
    • pp.12-16
    • /
    • 2011
  • Purpose: This study examined the biomechanical stability of four different plating techniques in the experimental model of mandibular subcondyle fracture. Methods: Twenty standardized bovine tibia bone samples ($7{\times}1.5{\times}1.0cm$) were used for this study. Each of the four sets of tibia bone was cut to mimic a perpendicular subcondyle fracture in the center area. The osteotomized tibia bone was fixed using one of four different fixation groups (A,B,C,D). The fixation systems included single 2.0 mm 4 hole mini adaption plate (A), single 2.0 mm 4 hole dynamic compression miniplate (B), double fixation with 2.0 mm 4 hole mini adaption plate (C), double fixation with a 2.0 mm 4 hole mini adaption plate and 2.0 mm 4 hole dynamic compression miniplate (D). A bending force was applied to the experimental model using a pressure machine (858 table top system, $MTS^{(R)}$) until failure occurred. The load for permanent deformation, maximum load of failure were measured in the load displacement curve with the chart recorder. Results: Double fixation with a 2.0 mm 4 hole mini adaption plate and a 2.0 mm 4 hole dynamic compression miniplate (D) applied to the anterior and posterior regions of the subcondyle experimental model showed the highest load to failure. Conclusion: From this study, double fixation with an adaption plate and dynamic compression miniplate fixation technique produced the greatest biomechanical stability. This technique may be considered a useful means of fixation to reduce the postoperative internal maxillary fixation period and achieve early mobility of the jaw.

A Case on Excavation Plan and Design of Adjacent Railroad Tunnel (근접 철도터널의 굴착계획 및 설계 사례)

  • 김선홍;정동호;석진호;정건웅;서성호
    • Explosives and Blasting
    • /
    • v.20 no.3
    • /
    • pp.59-71
    • /
    • 2002
  • The points of this design case are the planning and excavation method of a new double-tracked railroad tunnel which is approx. 11∼22 meters apart from existing single-tracked railroad tunnel. For the optimum excavation method some needs are required in design stage, such as the reduction of noise and vibration, public resentment, damage of buildings and construction costs. Hence the estimation and application of allowable noise and vibration criterion is important. The ground coefficient (K, n) of this site is determined by field trial blasting. The excavation method is chosen to satisfy the allowable noise and vibration criterion. In addition, in order to ensure the stability of existing single-tracked railroad tunnel, the instrumentation of maintenance level is accompanied during the construction stage. As a result of this design condition, central diaphragm excavation with line drilling and pre-large hole boring blasting is applied to the area within 15 meters apart from existing tunnel. And above 15 meters apart, pre-large hole boring blasting is designed.

Hole trapping in carbon nanotube-polymer composite organic light emitting diodes

  • Woo, H.S.;Czerw, R.;Carroll, D.L.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1047-1052
    • /
    • 2003
  • Controlling carrier transport in light emitting polymers is extremely important for their efficient use in organic opto-electronic devices [1]. Here we show that the interactions between single wall carbon nanotubes (SWNTs) and conjugated polymers can be used to modify the overall mobility of charge carriers within nanotube-polymer nanocomposites. By using a unique, double emitting-organic light emitting diodes (DE-OLEDs) structure. we have characterized the hole transport within electroluminescent nanocomposites (nanotubes in poly (m-phenylene vinylene-co-2,5-dioctoxy-p-phenylene) or PmPV). We have shown using this idea that single devices with color tunability can be fabricated. It is seen that SWNTs in PmPV are responsible for hole trapping, leading to shifts in the emission wavelengths. Our results could lead to improved organic optical amplifiers, semiconducting devices, and displays.

  • PDF

Study on Blast Effects of Decoupling Condition and Polymer Gel Coupling in Single Blast Hole by Numerical Analysis (디커플링 조건 및 폴리머 겔 적용에 따른 발파공 발파위력 영향에 관한 수치해석 연구)

  • Ko, Young-Hun;Jung, Seung-Won;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.36 no.2
    • /
    • pp.1-9
    • /
    • 2018
  • In this paper, AUTODYN blasting simulation of single blast hole were conducted to evaluate the blasting effects of Polymer Gel. The coupling mediums used as the filling material around an explosive charge were air and gelatin. each simulation case was D I(decoupling index) 1.0, 1.25, 1.56 with air or polymer gel coupling materials. In order to evaluate blast effects full charge model was used as a reference for evaluation of blasting effects. The results of numerical analysis showed that fragmentation of a limestone model of were much more fractured by polymer gel medium than by air medium. As expected, the transmitted peak pressure was higher polymer gel coupled model than in air medium.

Fracture characterization with high frequency single-hole EM survey

  • Seo, Soon-Jee;Song, Yoon-Ho;Kim, Hee-Joon;Lee, Ki-Ha;Suh, Jung-Hee
    • Proceedings of the KSEEG Conference
    • /
    • 1999.04a
    • /
    • pp.90-93
    • /
    • 1999
  • We present a high frequency electromagnetic (EM) inversion scheme for detecting and characterizing a fracture using single-hole data. At high frequencies, say above tens of mega-hertz, since displacement currents cannot be ignored, electrical permittivity as well as electrical conductivity is to be considered together for analyzing the EM scattering data. In this paper, we have developed a three-step inversion scheme to map the fracture and to evaluate its electrical conductivity and permittivity. We performed EM profiling along the z-axis using three-component receivers for each source. The model was excited by a vertical magnetic dipole and the resistant magnetic fields were inverted using the non-linear least-squares method. Background resistivity and permittivity were easily obtained using vertical magnetic fields below 1 MHz and above 10 MHz, respectively. Both the vertical and dipping sheets were successfully mapped using the phase difference between 40 and 41 MHz. The electrical property of the sheet was well resolved using the information obtained in the previous two steps and secondary magnetic fields. Our study shows the potential of imaging the fracture in single-hole survey environment using the high frequency EM method.

  • PDF

A Fast Scheme for Inverting Single-Hole Electromagnetic Data

  • Kim Hee Joon;Lee Jung-Mo;Lee Ki Ha
    • Proceedings of the KSEEG Conference
    • /
    • 2002.04a
    • /
    • pp.167-169
    • /
    • 2002
  • The extended Born, or localized nonlinear approximation of integral equation (IE) solution has been applied to inverting single-hole electromagnetic (EM) data using a cylindrically symmetric model. The extended Born approximation is less accurate than a full solution but much superior to the simple Born approximation. When applied to the cylindrically symmetric model with a vertical magnetic dipole source, however, the accuracy of the extended Born approximation is greatly improved because the electric field is scalar and continuous everywhere. One of the most important steps in the inversion is the selection of a proper regularization parameter for stability. Occam's inversion (Constable et al., 1987) is an excellent method for obtaining a stable inverse solution. It is extremely slow when combined with a differential equation method because many forward simulations are needed but suitable for the extended Born solution because the Green's functions, the most time consuming part in IE methods, are repeatedly re-usable throughout the inversion. In addition, the If formulation also readily contains a sensitivity matrix, which can be revised at each iteration at little expense. The inversion algorithm developed in this study is quite stable and fast even if the optimum regularization parameter Is sought at each iteration step. Tn this paper we show inversion results using synthetic data obtained from a finite-element method and field data as well.

  • PDF

Studies on the Characteristics of Single-Layered Organic EL Device Using a Copolymer Having Hole and Electron Transporting Moieties (정공 및 전자 전달체의 기능기를 가진 공중합체를 사용한 단층형 유기 발광소자의 특성에 관한 연구)

  • 이창호;김승욱;오세용
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.543-550
    • /
    • 2002
  • We have synthesized a novel carrier transporting copolymer having triphenylamine moiety as a hole transporting unit and triazine moiety as an electron transporting unit in the polymer side chain. Single-layered organic electroluminescent (EL) devices consisted of ITO/copolymer and emitting materials (DCM, coumarin 6, DPvBi)/Al exhibited maximum external quantum efficiency when the ratio of hole transporting unit and electron transporting unit is 6:4 and the content of emitting material is 30 wt%. Especially, the devices emitted the light of red (620 nm), green (520 nm) and blue (450 nm) corresponding to the emitting materials, respectively. A maximum luminance of ITO/copolymer (6:4) and DCM (30 wt%)/Al EL device was about 500 cd/$m^2$ at a DC drive voltage of 12V.