• Title/Summary/Keyword: Single domain model

Search Result 245, Processing Time 0.024 seconds

Analysis of Performance for SC-FDE Systems Using Proportional Adaptive Equalizer in $2GHz{\sim}10GHz$ Frequency Radio Channel Models ($2GHz{\sim}10GHz$ 무선 채널 환경에서 비례 적응형 등화기를 이용한 SC-FDE 시스템 구현과 성능분석)

  • Yang, Yong-Seok;Lee, Kyu-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.447-453
    • /
    • 2007
  • In the multipath fading channel, OFDM(Orthogonal Frequency Division Multiplexing)system possess the characteristics of ISI/ICIwith prefix, but a weak point of circuit complexity and PAPR problem. SC-FDE(Single Carrier with Frequency Domain Equalization) performance is similar to OFDM system, but equalizer is complex in frequency domain. In this paper, simple proportional equalizer offer for SC-FDE system, it useful method in the $2GHz{\sim}\;10GHz$ channel model such as indoor, outdoor, SUI. It prove using MATLAB simulation, speed faster then OFDM system, reduce terminal complexity in same test condition.

Separation of Single Channel Mixture Using Time-domain Basis Functions

  • Jang, Gil-Jin;Oh, Yung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4E
    • /
    • pp.146-155
    • /
    • 2002
  • We present a new technique for achieving source separation when given only a single charmel recording. The main idea is based on exploiting the inherent time structure of sound sources by learning a priori sets of time-domain basis functions that encode the sources in a statistically efficient manner. We derive a learning algorithm using a maximum likelihood approach given the observed single charmel data and sets of basis functions. For each time point we infer the source parameters and their contribution factors. This inference is possible due to the prior knowledge of the basis functions and the associated coefficient densities. A flexible model for density estimation allows accurate modeling of the observation, and our experimental results exhibit a high level of separation performance for simulated mixtures as well as real environment recordings employing mixtures of two different sources. We show separation results of two music signals as well as the separation of two voice signals.

Separation of Single Channel Mixture Using Time-domain Basis Functions

  • 장길진;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.146-146
    • /
    • 2002
  • We present a new technique for achieving source separation when given only a single channel recording. The main idea is based on exploiting the inherent time structure of sound sources by learning a priori sets of time-domain basis functions that encode the sources in a statistically efficient manner. We derive a learning algorithm using a maximum likelihood approach given the observed single channel data and sets of basis functions. For each time point we infer the source parameters and their contribution factors. This inference is possible due to the prior knowledge of the basis functions and the associated coefficient densities. A flexible model for density estimation allows accurate modeling of the observation, and our experimental results exhibit a high level of separation performance for simulated mixtures as well as real environment recordings employing mixtures of two different sources. We show separation results of two music signals as well as the separation of two voice signals.

A Study on Dynamic Responses of Tracked Vehicle on Extremely Soft Cohesive Soil (점착성 연약지반 주행차량의 동적거동 연구)

  • Kim, Hyung-Woo;Hong, Sup;Choi, Jong-Su
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.323-332
    • /
    • 2004
  • This paper concerns about a study on dynamic responses of tracked vehicle on soft cohesive soil. For dynamic analyses of tracked vehicle, two different models were adopted, i.e. a single-body model and a multi-body model. The single-body vehicle model was assumed as a rigid body with 6-dof. The multi-body vehicle was modeled by using a commercial software, RecurDyn-LM. For the both models properties of cohesive soft soil were modeled by means of three relationships: pressure to sinkage, shear displacement to shear stress, and shear displacement to dynamic sinkage. Traveling performances of the two tracked vehicle models were compared through dynamic analyses in time domain.

Implementation and Performance Analysis of a Parallel SIMPLER Model Based on Domain Decomposition (영역 분할에 의한 SIMPLER 모델의 병렬화와 성능 분석)

  • Kwak Ho Sang;Lee Sangsan
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.22-29
    • /
    • 1998
  • Parallel implementation is conducted for a SIMPLER finite volume model. The present parallelism is based on domain decomposition and explicit message passing using MPI and SHMEM. Two parallel solvers to tridiagonal matrix equation are employed. The implementation is verified on the Cray T3E system for a benchmark problem of natural convection in a sidewall-heated cavity. The test results illustrate good scalability of the present parallel models. Performance issues are elaborated in view of convergence as well as conventional parallel overheads and single processor performance. The effectiveness of a localized matrix solution algorithm is demonstrated.

  • PDF

Aerodynamic Analysis of Helicopter Rotor by Using a Time-Domain Panel Method

  • Kim, J.K.;Lee, S.W.;Cho, J.S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.638-642
    • /
    • 2008
  • Computational methods based on the solution of the flow model are widely used for the analysis of lowspeed, inviscid, attached-flow problems. Most of such methods are based on the implementation of the internal Dirichlet boundary condition. In this paper, the time-domain panel method uses the piecewise constant source and doublet singularities. The present method utilizes the time-stepping loop to simulate the unsteady motion of the rotary wing blade. The wake geometry is calculated as part of the solution with no special treatment. To validate the results of aerodynamic characteristics, the typical blade was chosen such as, Caradonna-Tung blade and present results were compared with the experimental data and the other numerical results in the single blade condition and two blade condition. This isolated rotor blade model consisted of a two bladed rotor with untwisted, rectangular planform blade. Computed flow-field solutions were presented for various section of the blade in the hovering mode.

  • PDF

Finite element model updating of an arch type steel laboratory bridge model using semi-rigid connection

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Sevim, Baris;Kartal, Murat Emre;Adanur, Suleyman
    • Steel and Composite Structures
    • /
    • v.10 no.6
    • /
    • pp.541-561
    • /
    • 2010
  • This paper presents finite element analyses, experimental measurements and finite element model updating of an arch type steel laboratory bridge model using semi-rigid connections. The laboratory bridge model is a single span and fixed base structure with a length of 6.1 m and width of 1.1m. The height of the bridge column is 0.85 m and the maximum arch height is 0.95 m. Firstly, a finite element model of the bridge is created in SAP2000 program and analytical dynamic characteristics such as natural frequencies and mode shapes are determined. Then, experimental measurements using ambient vibration tests are performed and dynamic characteristics (natural frequencies, mode shapes and damping ratios) are obtained. Ambient vibration tests are performed under natural excitations such as wind and small impact effects. The Enhanced Frequency Domain Decomposition method in the frequency domain and the Stochastic Subspace Identification method in the time domain are used to extract the dynamic characteristics. Then the finite element model of the bridge is updated using linear elastic rotational springs in the supports and structural element connections to minimize the differences between analytically and experimentally estimated dynamic characteristics. At the end of the study, maximum differences in the natural frequencies are reduced on average from 47% to 2.6%. It is seen that there is a good agreement between analytical and experimental results after finite element model updating. Also, connection percentages of the all structural elements to joints are determined depending on the rotational spring stiffness.

The Design of Integrated Flying Vehicle Model for Engagement Analyses of Missiles

  • Ha, Sue Hyung
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.8
    • /
    • pp.930-939
    • /
    • 2019
  • High-Level Architecture(HLA)/Run-Time Infrastructure(RTI) are standards for distributed simulation systems and offer a technology to interconnect them and form one single simulation system. In defense domain, M&S is the only way to prove effectiveness of weapon systems except for Live Fire Testing (LFT). This paper focuses on guided missile simulations in weapon systems for engagement analyses and proposes the integrated flying vehicle model that is based on HLA/RTI. There are a lot of missiles in real world; therefore, we should develop each missile models in M&S in order to apply battlefield scenarios. To deal with the difficulties, in this paper, firstly, I classify these missiles into three models: ballastic, cruise, and surface-to-air missile models, and then I design each missile model and integrates them into a single model. This paper also offers a case study with my integrated flying vehicle model. At the conclusion, this paper presents contributions of this paper.

Backbone Dynamics and Model-Free Analysis of N-terminal Domain of Human Replication Protein A 70

  • Yoo, Sooji;Park, Chin-Ju
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.1
    • /
    • pp.18-25
    • /
    • 2018
  • Replication protein A (RPA) is an essential single-stranded DNA binding protein in DNA processing. It is known that N terminal domain of RPA70 (RPA70N) recruits various protein partners including damage-response proteins such as p53, ATRIP, Rad9, and MRE11. Although the common binding residues of RPA70N were revealed, dynamic properties of the protein are not studied yet. In this study, we measured $^{15}N$ relaxation parameters ($T_1,\;T_2$ and heteronuclear NOE) of human RPA70N and analyzed them using model-free analysis. Our data showed that the two loops near the binding site experience fast time scale motion while the binding site does not. It suggests that the protein binding surface of RPA70N is mostly rigid for minimizing entropy cost of binding and the loops can experience conformational changes.

Biomechanical Analysis of Human Balance Control

  • Shin, Youngkyun;Park, Gu-Bum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.3
    • /
    • pp.63-71
    • /
    • 2014
  • A single-inverted-pendulum model is presented to simulate and predict the passive response of human balance control. This simplified biomechanical model was comprised of a torsional spring and damper, and a lump mass. An estimation of frequency response function was conducted to parameterize the complexity. The frequency domain identification method is used to identify the parameters of the model. The equivalent viscoelastic parameters of standing body were obtained and there was good conformity between the simulation and experimental result.